260 likes | 444 Views
Health impact assessment of urban water: Bioaerosols. Helena Sales Ortells 10 th February 2011 TU Delft. Introduction. Bioaerosols: aerosol of biological origin or activity that can cause health disorders after inhalation/ingestion. Origin Farms Water Humans (sneeze, cough, skin) etc.
E N D
Health impact assessment of urban water:Bioaerosols Helena Sales Ortells 10th February 2011 TU Delft
Introduction • Bioaerosols: aerosol of biological origin or activity that can cause health disorders after inhalation/ingestion. • Origin • Farms • Water • Humans (sneeze, cough, skin) • etc
Factors that influence sampling • Sampler: • Collection efficiency: d50, jet velocity, jet-to plate distance, reaerosolization • Biological preservation: jet velocity and jet-to-plate distance (embedding and impaction stress), media, desiccation stress, surface tension stress. • Aerosols nature and size • Microorganism: • Hardiness: Hardy (e.g. Bacillus) vs Sensitive (e.g. E.coli) • Size (dae>d50) • Shape, charge, nature… • Environmental / sampling conditions: • Temperature • RH • P • Insolation • Wind speed and direction • Sampling time
Some information from the literature review • Virus and small bacteria • Liquid impingers have low collection efficiencies, except for Personal Sampler • Better MAS-100. • Impactors and filters give good results for hardy microorganisms. • Liquid impingers perform better for sensitive species. • Evaporation of fluid (long sampling times). Solutions: • Periodically refilling of the sampling fluid • Use of BioSampler with non-evaporating liquids • Reaerosolization of particles. Solutions: • Use of the Personal Sampler • Use of the BioSampler (with high viscosity liquids)
Objectives • Select the best sampler for each target microorganism (higher recovery rate and survival) • Select the best analytical quantitative method • Understand the characteristics that affect bioaerosols sampling and survival • Reduce the uncertainty of the field studies
Microorganisms • Resistant bacteria: B. subtilis • Spores: 0.7 / 1.7 μm • Cells: 0.86 μm (dae) • Sensitive bacteria • P. fluorescens: 0.6 μm (dae) • E. coli: 0.8 μm (dae) • Virus: MS2 bacteriophage • 27-28nm (~Norovirus)
Aerosols generators: SLAG vs Collison 0.2-2mL/min 5-30 L/min 0.5 or 2 μm
SLAG VS Collison (Mainelis et al., 2005)
Samplers for study • SKC BioSampler: • Lower impaction stress (better performance for sensitive species) • Evaporation and reaerosolization can be decreased • Allows use and comparison of different liquid media • Personal Sampler: • Good performance for virus and small bacteria • MAS-100: • To compare with a solid impactor • Good performance for virus and small bacteria • Filters (gelatin and PTFE or PC): • To compare with impactors • For FM tests
Efficiency of samplers • Physical collection efficiency (PCE): capacity of the sample for collecting aerosols: • Inlet efficiency • Wall losses • Collection stage efficiency (d50, reaerosolization…) • Biological efficiency (BE): survival • Impaction stress • Dehydration…
Experimental Set-up: efficiency PCE: Total counts BE: Viable counts
Objectives • Study the airborne microorganisms survival and dispersal at several distances downwind from a (water) source • Obtain information for exposure assessment • Validate literature models on aerosol dispersion
Procedure • Continuous emission source • Sampler(s) selected on the previous stage • Several distances downwind from source • Blanco upwind • Several heights • Petri dishes to estimate dry deposition • Monitor parameters (Ta, RH, insolation, wind…)
Literature (I) • Agranovski, I. E., V. Agranovski, T. Reponen, K. Willeke and S. A. Grinshpun (2002). Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric Environment36: 889-898. • Agranovski, I. E., A. S. Safatov, A. I. Borodulin, O. V. Pyankov, V. A. Petrishchenko, A. N. Sergeev, A. A. Sergeev, V. Agranovski and S. A. Grinshpun (2005). New personal sampler for viable airborne viruses: feasibility study. Journal of Aerosol Science36(5-6): 609-617. • Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall and L. Morawska (2003). Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Journal of Aerosol Science34(3): 301-317. • An, H. R., G. Mainelis and L. White (2006). Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment40(40): 7924-7939. • Borodulin, A. I., B. M. Desyatkov, N. A. Lapteva, A. N. Sergeev and I. E. Agranovski (2006). Personal sampler for monitoring of viable viruses; modelling of outdoor sampling conditions. Atmospheric Environment40(35): 6687-6695.
Literature (II) • Brandi, G., M. Sisti and G. Amagliani (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology88(5): 845-852. • Brennan-Calanan, R. M. and M. A. Gallo (2008). Bacterial air pollution at a wastewater treatment plant. BIOS79(4): 150-159. • Brooks, J., B. Tanner, K. Josephson, C. Gerba, C. Haas and I. Pepper (2005). A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology99(2): 310-322. • Chang, C.-W., F.-C. Chou and P.-Y. Hung Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative PCR. Journal of Aerosol ScienceIn Press, Accepted Manuscript. • Deloge-Abarkan, M., T.-L. Ha, E. Robine, D. Zmirou-Naviera and L. Mathieu (2007). Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). Journal of Environmental Monitoring9: 91-97. • Henningson, E. W. and M. S. Ahlberg (1994). Evaluation of microbiological aerosol samplers: A review. Journal of Aerosol Science25(8): 1459-1492. • Ho, J., M. Spence and S. Duncan (2005). An approach towards characterizing a reference sampler for culturable biological particle measurement. Journal of Aerosol Science36(5-6): 557-573.
Literature (III) • Hogan, C. J., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent and P. Biswas (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology99(6): 1422-1434. • Jensen, P. A., W. F. Todd, G. N. Davis and P. V. Scarpino (1992). EVALUATION OF EIGHT BIOAEROSOL SAMPLERS CHALLENGED WITH AEROSOLS OF FREE BACTERIA. American Industrial Hygiene Association Journal53(10): 660-667. • Lin, X., T. A. Reponen, K. Willeke, S. A. Grinshpun, K. K. Foarde and D. S. Ensor (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment33(26): 4291-4298. • Mainelis, G., D. Berry, H. Reoun An, M. Yao, K. DeVoe, D. E. Fennell and R. Jaeger (2005). Design and performance of a single-pass bubbling bioaerosol generator. Atmospheric Environment39(19): 3521-3533. • Medema, G., B. Wullings, P.Roeleveld and D. v. d. Kooij (2004). Risk assessment of Legionella and enteric pathogens in sewage treatment works. Water Science and Technology4(2): 125-132. • O’Toole, J., M. Keywood, M. Sinclair and K. Leder (2009). Risk in the mist? Deriving data to quantify microbial health risks associated with aerosol generation by water-efficient devices during typical domestic water-using activities. Water Science and Technology60(11): 2913-2920.
Literature (IV) • Páez-Rubio, T. and J. Peccia (2006). The emission rate, biological characterization and transport of aerosols emitted during the disk incorporation of class B biosolids. Proceedings of the Water Environment Federation. • Park, J.-M., J. C. Rock, L. Wang, Y.-C. Seo, A. Bhatnagar and S. Kim (2009). Performance evaluation of six different aerosol samplers in a particulate matter generation chamber. Atmospheric Environment43(2): 280-289. • Spaan, S., L. A. M. Smit, W. Eduard, L. Larsson, H. J. J. M. Arts, I. M. Wouters and D. J. J. Heederik (2008). Endotoxin Exposure in Sewage Treatment Workers: Investigation of Exposure Variability and Comparison of Analytical Techniques. Annals of Agricultural and Environmental Medicine15: 251-261. • Tham, K. W. and M. S. Zuraimi (2005). Size relationship between airborne viable bacteria and particles in a controlled indoor environment study. Indoor Air15: 48-57. • Tseng, C.-C. and C.-S. Li (2005). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science36(5-6): 593-607. • Van Droogenbroeck, C., M. Van Risseghem, L. Braeckman and D. Vanrompay (2009). Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air. Veterinary Microbiology135(1-2): 31-37. • Yao, M. and G. Mainelis (2006). Effect of physical and biological parameters on enumeration of bioaerosols by portable microbial impactors. Journal of Aerosol Science37(11): 1467-1483.