1 / 19

Space-time Tradeoffs for Longest-Common-Prefix Array Construction

Explore the significance of Longest Common Prefix Array (LCP) construction algorithms, comparing existing methods to new ones and their practical applications. Discuss space-time tradeoffs and performance metrics in text processing.

janettt
Download Presentation

Space-time Tradeoffs for Longest-Common-Prefix Array Construction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Space-time Tradeoffs forLongest-Common-Prefix Array Construction Simon J. Puglisi and Andrew Turpin (simon.puglisi@rmit.edu.au)

  2. Outline • Refresher on suffix array (SA) and longest-common-prefix array (LCP) basics • Why are they useful? • Existing algorithms for LCP construction • Why do we need new ones? • Two algorithms for LCP construction • Empirical comparison to earlier algorithms • Concise representations of LCP array

  3. The Ubiquitous Suffix Array i suffix 0 toy_boat_toy_boat_toy_boat$ 1 oy_boat_toy_boat_toy_boat$ 2 y_boat_toy_boat_toy_boat$ 3 _boat_toy_boat_toy_boat$ 4 boat_toy_boat_toy_boat$ 5 oat_toy_boat_toy_boat$ 6 at_toy_boat_toy_boat$ 7 t_toy_boat_toy_boat$ 8 _toy_boat_toy_boat$ 9 toy_boat_toy_boat$ 10 oy_boat_toy_boat$ 11 y_boat_toy_boat$ 12 _boat_toy_boat$ 13 boat_toy_boat$ 14 oat_toy_boat$ 15 at_toy_boat$ 16 t_toy_boat$ 17 _toy_boat$ 18 toy_boat$ 19 oy_boat$ 20 y_boat$ 21 _boat$ 22 boat$ 23 oat$ 24 at$ 25 t$ 26 $ SA suffix 26 $ 24 at$ 15 at_toy_boat$ 6 at_toy_boat_toy_boat$ 22 boat$ 13 boat_toy_boat$ 4 boat_toy_boat_toy_boat$ 23 oat$ 14 oat_toy_boat$ 5 oat_toy_boat_toy_boat$ 19 oy_boat$ 10 oy_boat_toy_boat$ 1 oy_boat_toy_boat_toy_boat$ 25 t$ 18 toy_boat$ 9 toy_boat_toy_boat$ 0 toy_boat_toy_boat_toy_boat$ 16 t_toy_boat$ 7 t_toy_boat_toy_boat$ 20 y_boat$ 11 y_boat_toy_boat$ 2 y_boat_toy_boat_toy_boat$ 21 _boat$ 12 _boat_toy_boat$ 3 _boat_toy_boat_toy_boat$ 17 _toy_boat$ 8 _toy_boat_toy_boat$ Suffix Sort

  4. The Longest-Common-Prefix (LCP) Array LCP SA suffix - 26 $ 0 24 at$ 2 15 at_toy_boat$ 10 6 at_toy_boat_toy_boat$ 0 22 boat$ 4 13 boat_toy_boat$ 13 4 boat_toy_boat_toy_boat$ 0 23 oat$ 3 14 oat_toy_boat$ 12 5 oat_toy_boat_toy_boat$ 1 19 oy_boat$ 7 10 oy_boat_toy_boat$ 16 1 oy_boat_toy_boat_toy_boat$ 0 25 t$ 1 18 toy_boat$ 8 9 toy_boat_toy_boat$ 17 0 toy_boat_toy_boat_toy_boat$ 1 16 t_toy_boat$ 10 7 t_toy_boat_toy_boat$ 0 20 y_boat$ 6 11 y_boat_toy_boat$ 15 2 y_boat_toy_boat_toy_boat$ 0 21 _boat$ 5 12 _boat_toy_boat$ 14 3 _boat_toy_boat_toy_boat$ 0 17 _toy_boat$ 9 8 _toy_boat_toy_boat$ LCP[i] = The length of the longest common prefix of suffix SA[i] and SA[i-1]. = |lcp(SA[i-1],SA[i])|, i > 0

  5. Why the Longest-Common-Prefix array? • (SA,LCP,x) == suffix tree • Any bottom-up and top-down traversal (Abouelhoda et al., JDA 2004) • Same asymptotic time bounds, just smaller and faster in practice • Eg., LZ77 factorization (Chen et al., CPM 2007) • Important for disk resident suffix trees • LOFSA (Sinha et al., SIGMOD 2008)

  6. Previous work • Brute force: • for each i \in 1..n-1 work out LCP[i] by comparing t[SA[i-1]..n] to t[SA[i]..n] until we get a mismatch • Expensive if string has regularities, O(n2) in the worst case • Ө(n) time (Kasai et al., CPM 1999) • 13n bytes of space • x[1..n], SA[1..n], ISA[1..n], LCP[1..n] • Ө(n) time (Manzini, SWAT 2004) • Two refinements of Kasai et al.’s algorithm • 9n bytes • 6n + 4Hkn bytes (space usage decreases with text entropy)

  7. The need for new LCP construction algorithms • Prior algorithms use lots of memory • Try to compute LCP[] for the Human Genome • DNA has high entropy, so 9n byte alg is best • 27Gb of RAM • Poor locality of memory reference • Using secondary memory for large inputs implausible • Even in RAM the algorithms are (relatively) slow • Eg., slower than the fastest SA construction algorithms

  8. New Alg: choose a (special) sample of suffixes SA 26 24 15 6 22 13 4 23 14 5 19 10 1 25 18 9 0 16 7 20 11 2 21 12 3 17 8 • Choose a sample of the SA and compute lcp’s • Preprocess L for O(1) time Range Minimum Queries (RMQ) – requires 2n + o(n) bits, after O(n) time preprocessing (Fischer 2008) • Lcp for two non-adjacent suffixes is the minimum value in L[] between them. L S suffix - 15 at_toy_boat$ 0 22 boat$ 4 4 boat_toy_boat_toy_boat$ 0 23 oat$ 1 1 oy_boat_toy_boat_toy_boat$ 0 25 t$ 1 18 toy_boat$ 8 9 toy_boat_toy_boat$ 1 16 t_toy_boat$ 0 11 y_boat_toy_boat$ 15 2 y_boat_toy_boat_toy_boat$ 0 8 _toy_boat_toy_boat$

  9. The sample is defined by a difference cover • A difference cover Dv, modulo v, is a set of integers in the range [0..v) such that for all i \in [0..v), there exist j, k \in Dv such that i = k-j (mod v). • A tool for linear time suffix sorting (Karkkainen et al, JACM, 2006) • |Dv| = O(√v) • δ function defined on Dv: • δ(i,j) = k, i+k and j+k \in Dv (mod v) for any i,j • δ computed in O(1) time and requires O(v) space

  10. New Alg: choose a (special) sample of suffixes SA 26 24 15 6 22 13 4 23 14 5 19 10 1 25 18 9 0 16 7 20 11 2 21 12 3 17 8 • S has O(n/√v) elements (because |Dv| is O(√v)) • In this example, suffixes i such that i mod 7 \in D7 = {1,2,4} have been chosen • Suffixes 1,2,4, 8,9,11, 15,16,18,… L S suffix - 15 at_toy_boat$ 0 22 boat$ 4 4 boat_toy_boat_toy_boat$ 0 23 oat$ 1 1 oy_boat_toy_boat_toy_boat$ 0 25 t$ 1 18 toy_boat$ 8 9 toy_boat_toy_boat$ 1 16 t_toy_boat$ 0 11 y_boat_toy_boat$ 15 2 y_boat_toy_boat_toy_boat$ 0 8 _toy_boat_toy_boat$

  11. S L i+δ(i,j) rank(i+δ(i,j)) l’ = lcp((i+δ(i,j)), (i+δ(i,j))) = RMQL(...) ..... l’ j+δ(i,j) rank(j+δ(i,j)) Using L to compute values in LCP lcp(i,j) i + δ(i,j) j j + δ(i,j) i δ(i,j) δ(i,j) l’ • lcp(i,j) = l’ + δ(i,j)

  12. Computing L • To compute L efficiently we exploit the following simple observation: • If lcp for SA[i] is l, then lcp for SA[i]+v ≥ l-v • The lcp for a given suffix provides a lower bound on the lcp of suffixes which follow it in the string. SA LCP • Overall O(n√v) time and O(n/√v) space to compute L j+v ≥ l-v ..... j l .....

  13. Combining things… • Now computing any LCP[k] requires at most v comparisons and an RMQ on L • To compute LCP over top of SA: • for i = 1 to n do • if lcp(SA[i],SA[i-1]) < v then • LCP[i] = lcp(SA[i],SA[i-1]) • else • LCP[i] = δ(i,j) + RMQL(…) • Total time O(nv); extra space O(n/√v)

  14. Running Time & Memory Required for 200Mb DNA 200 6n 9n 150 Time (sec) 13n 100 Ours (on disk) Ours (in memory) 50 0 2 4 6 8 10 12 14 Memory (bytes per input character)

  15. Running Time & Memory Required for 200Mb English 200 6n 150 9n Time (sec) Ours (on disk) Ours (in memory) 100 13n 50 0 2 4 6 8 10 12 14 Memory (bytes per input character)

  16. An even better algorithm… • In fact it’s possible to use even less space (and do away with the difference cover as well!) • Requires O(vn) time and O(n/v) space • (Juha Karkkainen, last Friday)

  17. Conclusions • O(nv) time, O(n/√v) space algorithm (using DC) • O(nv) time, O(n/v) space (by rejigging things a bit) • By varying v we have a controlled tradeoff between memory and time • Algorithms are fast and use low memory • Runtime is not greatly effected if the output (and most of the input) resides on disk

  18. Representing LCP in small space • The 2nd algorithm implies a concise representation of the LCP array • nlogn/v bits to store sample suffixes • nlogv bits to store “extra part” • Choosing v = logn → n + nloglogn bits • Sadakane 2001: 6n + o(n) bits

  19. Future Work • Can we eliminate the random access to the text so that algorithm scales unboundedly? • Is there a way to exploit the self-similarity present in the SA (and hence LCP) to further reduce constant factors in the runtime? • What is the concise representation like in practice? Can it be made smaller?

More Related