120 likes | 451 Views
Procedures in RFLP. RFLP analysis can detect. Point mutations Length mutations Inversions. Effect of base changes on RFLP DNA profiles. -. c. a b c. ── ── ── ── ──. ── 10 ── 9 ── 8 ── 7 ── 6 ── 5 ── 4 ── 3 ── 2 ── 1. d.
E N D
RFLP analysis can detect • Point mutations • Length mutations • Inversions
Effect of base changes on RFLP DNA profiles - c a b c ── ── ── ── ── ── 10 ── 9 ── 8 ── 7 ── 6 ── 5 ── 4 ── 3 ── 2 ── 1 d ── ── ── ── g f d ──── ── ── ── ── ── ── ── b ── ── ──── e a b c ── ── ── ── ── e a a c ── ── ── ── ── f a b’ b c h ── ── ── ── ── h g c + P = DNA marker Restriction site
Limitations in RFLP • Intensive work • High cost • High amount of DNA • Use of radioactive
Genetic diversity parameters • Co-dominant data (isozymes, RFLPs, SSRs) • Percentage of polymorphic loci, P • Mean no. of alleles per locus, A • Effective no. of alleles per locus, Ae • Ae = 1/ ii2 = 1/(1- He) • i is i-th allele frequency
Genetic diversity parameters • Co-dominant data (isozymes, RFLPs, SSRs) • Observed heterozygosity per locus, Ho • Expected heterozygosity per locus, He • He = (1- ii2 ) • i is i-th allele frequency
Genetic diversity parameters • Co-dominant data (isozymes, RFLPs, SSRs) • Fixation index, Fis • Fis = 1- Ho/He • Genetic differentiation, GST • GST = DST/HT where HT = Hs + DST • HT is total gene diversity; HS is gene diversity within population; DST is gene diversity between population
Genetic diversity parameters • Co-dominant data (isozymes, RFLPs, SSRs) • Genetic similarity, I • Jxy / JxJy • where J = 1- He, • X = population X; Y = population Y • Genetic distance, D • D = -ln I
Genetic diversity parameters • VNTR used as probes in RFLP analysis • Percentage of polymorphic loci • Shannon diversity index, H • H = ni=1 -i ln i • Genetic similarity, F • F = 2mxy / (mx+my) • mxy is number of shared fragments by X and Y • mx is number of fragments present in X • my is number fragments present in Y • Genetic distance, 1- F