430 likes | 605 Views
Coarse-Grained Transactions. Maurice Herlihy Brown University Joint work with Eric Koskinen and Matthew Parkinson. Skew Heaps. Tree with “heap” property. 0. 1. 2. 3. 4. Concurrent Skew Heap. Insert me!. Insert me!. 6. 0. 2. 1. 3. 4. 5. Concurrent Skew Heap. 2. 6. 0.
E N D
Coarse-Grained Transactions Maurice Herlihy Brown University Joint work with Eric Koskinen and Matthew Parkinson
Skew Heaps Tree with “heap” property 0 1 2 3 4 Dagstuhl Aug 2009
Concurrent Skew Heap Insert me! Insert me! 6 0 2 1 3 4 5 Dagstuhl Aug 2009
Concurrent Skew Heap 2 6 0 Lock parent Swap R & L 1 3 4 5 Dagstuhl Aug 2009
Concurrent Skew Heap 2 6 0 Unlock parent 1 3 4 5 Lock right child Dagstuhl Aug 2009
Concurrent Skew Heap No global rebalancing 6 0 1 3 Good amortized performance 4 5 2 Good concurrency Dagstuhl Aug 2009
Transactional Skew Heap Insert me! Insert me! 6 0 2 1 3 4 5 Dagstuhl Aug 2009
Transactional Skew Heap Good concurrency with locking 2 6 0 Write-write conflict! I wrote Not with transactions … 1 3 0 4 5 Confusion between thread-level & transaction-level synchronization Dagstuhl Aug 2009
Coarse-Grained Synchronization Synchronize on high-level operations, Like add(), remove(), etc. … Not low-level reads and writes Pessimistic: update in place, undo on abort Optimistic: update private copy, apply changes on commit But what is the meaning ofconflict? Dagstuhl Aug 2009
Pessimistic Coarse-Grained Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) rem(x) x Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) rem(x) add(y) x y Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained add(x) rem(x) member(x) x Undo Logs transactions Abstract locks Black-box linearizable data object Dagstuhl Aug 2009
Pessimistic Coarse-Grained Thread-safe base object Log Inverses Updated in place Conflicting operations blocked by abstract locks What does it mean for operations to conflict? Dagstuhl Aug 2009
Optimistic Coarse-Grained Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained private copies Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained redo logs private copies Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained add(x) redo logs private copies Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained add(x) redo logs add(x) private copies x Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained add(y) add(x) redo logs add(x) add(y) private copies x y Black-box linearizable data object Dagstuhl Aug 2009
On Commit redo logs add(x) add(y) add(x) private copies x y add(x) Black-box linearizable data object Dagstuhl Aug 2009
No conflict, apply updates to my copy On Commit redo logs add(x) add(y) add(x) private copies x x y add(x) x Black-box linearizable data object Dagstuhl Aug 2009
On Commit Different physical values, Same logical values add(x) add(y) add(x) x x y add(x) x Dagstuhl Aug 2009
Conflict! Abort & restore my copy On Commit redo logs add(x) rem(x) add(x) private copies x add(x) x Black-box linearizable data object Dagstuhl Aug 2009
Optimistic Coarse-Grained Thread-local object copies Deferred operatons kept in redo log No inverses On commit, broadcast deferred operations To other transactions, public copy Transactions snoop on broadcast, Abort if conflict detected What does it mean for operations to conflict? Dagstuhl Aug 2009
time Left-Movers legal history Dagstuhl Aug 2009
time Left-Movers If and are adjacent, Ok to move earlier Dagstuhl Aug 2009
time Left-Mover Example: Semaphore dec() inc() dec() 1 0 1 0 Dagstuhl Aug 2009
time Inc() is Left-mover WRT Dec() inc() dec() dec() 1 0 1 1 0 2 1 1 0 Dagstuhl Aug 2009
time Left-Mover Example: Semaphore Same sequence of calls (results unaffected) inc() dec() dec() 1 0 1 1 0 2 1 1 0 Dagstuhl Aug 2009
time Left-Mover Example: Semaphore inc() dec() dec() 3 3 2 3 2 4 3 3 2 Same final state Dagstuhl Aug 2009
dec() inc() dec() time 0 1 0 Left-Mover CounterExample 1 Dagstuhl Aug 2009
dec() inc() dec() time 0 1 0 Dec() not Left-Mover WRT Inc() -1 1 Dagstuhl Aug 2009
time Right-Movers legal history Dagstuhl Aug 2009
time Right-Movers If and are adjacent, Ok to move later Dagstuhl Aug 2009
time Commutativity If and are adjacent, Ok to swap Dagstuhl Aug 2009
Pessimistic needs Right-Movers • Right-Moverness ensures that aborting transaction’s operations can be ordered after the others’. • So we can apply inverses. • OK to proceed if operation is LM wrt other tentative operations. Dagstuhl Aug 2009
Optimistic needs Left-Movers • Left-Moverness ensures that committing transaction’s operations can be ordered before the others’. • Abort self if concurrent transaction commits non-LM operation. Dagstuhl Aug 2009
Summary • Identified link between • 2 basic concurrency control techniques • Algebraic properties of operations • Paper has • formal semantics, proofs … • Application to existing systems Dagstuhl Aug 2009
Challenges • Automation? • Theorem proving • Model checking • Compiler & Language support? • Implementation … Dagstuhl Aug 2009