200 likes | 382 Views
自转与公转. (1)上面情景中的转动现象,有什么共同的特征? (2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?. (1)上面情景中的转动现象,有什么共同的特征?. (2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?. 图形的旋转. 在平面内,将一个图形绕着一个 定点 沿某个方向 转动一个角度 ,这样的图形运动称为旋转。. 旋转角. 旋转中心. 这个定点称为 旋转中心 ,转动的角称为 旋转角 。. A. B. o. 练习 1:. 下列现象中属于旋转的有 ( ) 个
E N D
(1)上面情景中的转动现象,有什么共同的特征?(1)上面情景中的转动现象,有什么共同的特征? (2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?
(1)上面情景中的转动现象,有什么共同的特征?(1)上面情景中的转动现象,有什么共同的特征? (2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。 旋转角 旋转中心 这个定点称为旋转中心,转动的角称为旋转角。 A B o
练习1: 下列现象中属于旋转的有( )个 ①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动. A.2 B.3 C.4 D.5
C B 平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小 A O 2、不同
议一议 如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中: (1)旋转中心是什么? (2)经过旋转,点A、B分别移动到什么位置? (3)旋转角是什么? (4)AO与DO的长有什么关系?BO与EO呢? (5)∠AOD与∠BOE有什么大小关系? 旋转中心是O 点D和点E的位置 ∠AOD和∠BOE都是旋转角 AO=DO,BO=EO ∠AOD=∠BOE F C B D E A O
将等边△ABC绕着点C按某个方向旋转900后得到△A/B/C将等边△ABC绕着点C按某个方向旋转900后得到△A/B/C B/ A A/ B C
将等边△ABC绕着点o按某个方向旋转900后得到△A/B/C将等边△ABC绕着点o按某个方向旋转900后得到△A/B/C B/ A/ A C/ . 0 B C
旋转的基本性质 (1)旋转不改变图形的大小和形状. (2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度 (3)任意一对对应点与旋转中心的连线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等.
例1:钟表的分针匀速旋转一周需要60分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
解: (1)它的旋转中心是钟表的轴心; (2)分针匀速旋转一周需要60 分,因此旋转20分,分针 旋转的角度为
思考题:香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的?思考题:香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的? 可以看作是一个花瓣连续4次旋转所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
练习2:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?练习2:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度? 5次 600, 1200, 1800, 2400, 3000 也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度? 2次 1200 , 2400 还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度? 3个 1次 600 3个 1次 1800
A . M E B D C 例2 :如图,ABC是等边三角形,D是BC上一点, ABD经过 旋转后到达ACE的位置。 (1)旋转中心是哪一点? (2)旋转了多少度? (3)如果M是AB的中点,那么经过上述旋 转后,点M转到了什么位置? 解:(1)旋转中心是A; (2)旋转了60度; (3)点M转到了AC的中点位置上.
思考:图形的旋转是由什么 决定的 ? 图形的旋转是由旋转中心和旋转的角度决定.
课堂回顾:这节课,主要学习了什么? 旋转的概念: 在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转 旋转的性质: 1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的 角度都是旋转角,旋转角相等. 3、对应点到旋转中心的距离相等