540 likes | 656 Views
Effect of the Chemical Functionalization on Charge Transport in Carbon-based materials at the Mesoscopic Scale. Alejandro López Bezanilla. Institut des Nanosciences et Cryogénie (INAC) CEA Grenoble, France. Examiners : · Prof. Mark Casida (UJF) Président du Jury
E N D
Effect of the Chemical Functionalization on Charge Transport in Carbon-based materials at the Mesoscopic Scale Alejandro López Bezanilla Institut des Nanosciences et Cryogénie (INAC) CEA Grenoble, France Examiners: · Prof. Mark Casida (UJF) Président du Jury · Prof. Juan José Sáenz (UAM) Rapporteur · Prof. Alain Rochefort (EPM) Rapporteur · Dr. Xavier Blase (CNRS) · Dr. Pablo Ordejón (CIN2) Encadrants: · Dr. Stephan Roche (CEA) Encadrant · Dr. Pascale Maldivi (CEA) Co-encadrante (Grenoble) · Dr. Vincent Derycke (CEA) Co-encadrant (Saclay)
ChimTronique Transversal axes Saclay (S. Palacin) Grenoble (R. Baptist)
Outline → Motivations →Electronic properties of CNTs and GNRs ·Functionalization →Decimation method ·Green´s function technique →Results · Functionalized nanotubes ·Functionalized nanoribbons ·Edge defects in nanoribbons
Carbon atom Carbon atom Hybrid Molecular Orbitals Cohesion Electronic properties in the vicinity of EF Valence electron orbitals: ~ 2D (sp2) Graphene interactions between pz orbitals(bonds/bands) ~ 3D (sp3) Diamond
2 1 1 2 2 1 1 1 2 atoms/ cell nearest neighbor orbital overlap 2 2 1 -effective model
EF Nanotubes electronic properties Periodic Boundary conditions Armchair Zigzag EF=0
Summarizing What would it happen if we alter these properties ?
Bio-, photo-sensors → Selectiveelectricalsignals of molecular adsorption events. → Protein interaction. → Virus detection. Zhou et al. Nano Letters 9, 1028 (2009)
e- Left lead Right lead 300 nm Bio-, photo-sensors Photoactive molecules: Phtalocyanine … →Transmission after photoactive molecule functionalization. → Properties of the linker. hv S. Campideli et al. J. Am. Chem. Soc. 2008, 130, 11503
Towards graphene nanoribbon transistor Using top-down lithography to fabricateGNRs… · Ribbons down to ~ 10 nm width P. Kim et al (Columbia Univ. USA) E. Dujardin (CEMES, France) Ph. Avouris et al. (IBM, USA) · MOSFETs : clean GNR-FET with ~ 3nm are necessary !!! W 2 nm ! X. Li et al., Science 319, 1229 (2008) X. Wang et al., PRL 100, 206803 (2008)
Functionalizing graphene 2D Graphene and Graphene ribbons Goal: how to create or enlarge energy/conduction band gaps A graphene-based electrochemical switch (M. Lemme & A. Geim)
Hybrid Carbon Based Materials Is sp2bonding broken/preserved?
sp3 sp2 sp2 vs sp3 functionalization CH2chemisoption Zigzag nanotube axis Armchair nanotube axis
sp3 sp2 vs sp3 functionalization Phenyl chemisoption Tube axis
sp3 sp2 Electronic states LDoS (0.6 eV) Energy bands 2 phenyls X Γ Γ X carbene 2 phenyls carbene
SIESTA: an ab initio approach →Efficient tool for first-principles calculations (geometrical relaxation,…) → Local atomic-like orbitals basis set: · no coupling beyond a cutoff distance, · sparse Hamiltonian. → No fittings, no adjustable parameters. sp-hybrid orbital p-orbital s-orbital
1.3 nm Description of the system Building block →SWCNT (10,10) Size : ~ 500 atoms → phenyl groups 3 nm
Transport formalisms Kubo-Greenwood Landauer-Büttiker • Order N method : only Hamiltonian - Vector products allows big systems simulations • No contacts • Intrinsic properties • Quantum diffusion mechanism • Mean free path, scattering time, mobility • Order power N method : inversion of Hamiltonian limites size of systems simulations • Accuracy • Transmission and reflexion probability • Localization length, conductance
Problem statement Problemdefinition & Decimationtechnique
Problem definition Left lead Right lead Channel • Non-interacting electrons • Scattering free leads (perfect electrodes) • No backscattering at lead - reservoir interface • Incident electrons are in thermal equilibrium with reservoirs
Problem definition Nanotubes Left lead Right lead channel Nanoribbons Left lead Right lead channel
(r) (a) T(E) = Tr [ ΓLGCΓRGC ] (r) (a) ΓL,R = i [ ΣL,R -ΣL,R ] ~ HC ΣL ΣR Conductance from Green´s function Fisher and Lee relation for transmission: where: ~ GC = [ E- HC - ΣL- ΣR ] - 1 S. Fisher and P.A. Lee, Phys. Rev. Lett., 23, 6851 (1981) Datta, Electronic transport in mesoscopic system, Cambidge (1995)
Channel Problem definition VLC VCR ... ... Left lead Right lead HL HL HR HR HC HC Semi-infinite leads + Long channel (~ 100.000 orbitals) HL 0 VLC VCL HC VCR H = VRC HR 0 Decimationtechniques Norb
Decimation: 2-site model Wavefunction: Hamiltonian: Eigenvalue equation: Energy spectrum: Eigenvalues:
Decimation: 2-site model Self-energy is an effective potential that corrects the non-interacting on-site energy
→ A method to reduce the dimension of the Hamiltonian basis function space Decimation: 3-site model
~ V1,4 ~ V4,1 ~ ~ H1 H4 Decimation: N-site model V2,3 V1,2 V3,4 H2 H3 H1 H4
Long channel decimation Linear scaling with length: method of N order Building block 1 Right lead Building block 1 Building block 2 Pristine block Building block 3 Left lead
→ Finite size Hamiltonian Channel Left lead Right lead ~ HL 0 VLC ~ VCL HC VCR H = ~ VRC HR 0 NLorb NCorb NRorb Finite system
0 ~ VLC GLC E-HL ~ VCL VCR GCL GC GCR E-HC VRC GRC ~ 0 E-HR 1 0 0 0 1 0 1 0 0 Green´s function technique System Green´s function: where: · = ~ (1) GCL (E-HL) +GC VCL = 0 ~ (2) GCL VLC +GC (E-HC) + GCRVRC = 1 ~ (3) GC VCR +GCR (E-HR) = 0
Left & Right lead self-energies ~ HC ΣL ΣR Green´s function technique System Green´s function: ~ GCL GCL = -GC VCL gL (E-HL) +GC VCL = 0 (1) ~ ~ GC = [ E-HC - ΣL- ΣR ] - 1 GCL VLC +GC (E-HC) + GCRVRC = 1 (2) ~ GCR = -GC VCR gR GC VCR +GCR (E-HR) = 0 (3) where: gL= [ E- HL ]-1 gC = [ E- HC]-1
Results FunctionalizedCNTs
Quasi-ballistic Diffusive Localized Transport regimes
Metallic CNTs Diffusive regime phenyls in 300 nm 200 configurations
Metallic CNTs Quasi-ballistic regime Carbenes in 1000 nm 200 configurations
Semiconducting CNTs →Small radius: quasi-ballistic →Large radius: diffusive !!! 1000 nm
Semiconducting CNTs Parallel orientation CH2 →sp3 signature in “metallic” tubes →CH2 vs 2H 2 Hydrogens
Results FunctionalizedGNRs
OH/H vs phenyls → sp3rehybridization signature → T(E) is independent of functional group 2 nm wide 4 nm wide
OH/H functionalization → Backscatteringsupression foredgefunctionalization → Conductancedips → Quantum mechanicalinterferences A. L. Bezanilla, F. Triozon, S.Roche Nano Letters 9, 2737 (2009)
Long nanoribbons (large gap) 4 nm wide Mean free path A. L. Bezanilla, F. Triozon, S.Roche Nano Letters 9, 2737 (2009)
Long nanoribbons (small gap) 4 nm wide Mean free path A. L. Bezanilla, F. Triozon, S.Roche Nano Letters 9, 2737 (2009)
Results Edgedefects in GNRs
Edge defects Experimental evidences → Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Phys. Rev. Lett. 102, 015501 (2009) →P. Koskinen, S. Malola, H. Hakkinen, Phys. Rev. Lett. 101, 115502 (2008).
Benzenoid defects S.Dubois, A. L.-Bezanilla et al. Submitted to PRL
Doping defects Passivated Acceptor sp3-like Donor Radical passivation Backscattering suppression
Conclusions Decimation technique → Full ab initio transport studies: SIESTA +TB_Sim Carbon Nanotubes → Chemical modification leads to diffusive transport → sp2 vs sp3 functionalization Graphene Nanoribbons → sp3 defects induce backscattering → Mind the radicals! → Benzenoid edge defects are not critical in electronic transport properties
Coworkers Merci! ¡Gracias! Grazie! Tack!
Thanks for your attention