370 likes | 583 Views
AC Dielectrophoresis of Nanocolloids. Hsueh-Chia Chang Chemical and Biomolecular Engineering. MBT- WT. Nanoparticle Assays. Reduced Diffusion Length: Speed Enhanced Fluorescence Signal: Sensitivity. Neighboring charges cancel. Surface is induced with net positive charge.
E N D
AC Dielectrophoresis of Nanocolloids Hsueh-Chia Chang Chemical and Biomolecular Engineering
MBT- WT Nanoparticle Assays Reduced Diffusion Length: Speed Enhanced Fluorescence Signal: Sensitivity
Neighboring charges cancel Surface is induced with net positive charge Surface is induced with net negative charge E AC Dielectrophoretic DEP Dielectric Induced Particle Dipole Field-Induced Dielectirc Polarization: Independent of Surface Charge E fparticle - + - + Induced dipole - + - + Negative DEP Dipolar Assembly Stretching and Compression Net Force without Space Charge Sorting with Non-Uniform Field
Conductive Induced Dipolesin ElectrolytesWang, Wei & HCC, Biomicrofluidics (2008) z Fluorescent counterions Flourescent nanocolloids
A Smart DEP Trap of CdSe Nanowires R. Zhou, HCC et al. J App Phys (2006)
AC Electrokinetics with Embeddable Micro-Electrodes Color Images and Videos http://bmf.aip.org
AC Dielectrophoresis of RBC Zhou and HCC, Electrophoresis (2006)
Lastochkin et al APL (2004) DEP Microfluidic Platform
Electro-Rotation of Pyramid Cylinder 50kHz 100kHz
Spiral Trap Z. Gagnon and Chang Electrophoresis (2005)Video: Biomicrofluidics http:bmf.aip.org ACEO Velocity ~ cm/s
Embeddable Electrodes I-F Cheng, H-C Chang, D Hou & HCC, BMF (2007)
HCC (2007) 10 Minute DNA Identification
Glutaraldehyde Cross-Linking of Membrane Proteins 1 week 2,3 week Gagnon, Gordon & HCC Biomicrofluidics (2007) Electrophoresis (2008) Openning Ion Channels ?
Size Dependent DEP co a-1 scaling = 600 kHz Gagnon & HCC Electrophoresis (2004) P-DEP of bubbles Gorre-Talini et al., PRE (1997) Phenomena cannot be explained by conventional M-W theory
Size-Surface Charge Independent Maxwell-Wagner Frequency 1/2 > ++++ Postive DEP ---- a -- ++ E Cross-Over Frequency θ co Negative DEP -1/2 p/p=D/2 Charge Relax Freq
Conducting Particle MW theory Diffusive Layer Capacitor Pole Charging By Surface Current Insulated Particle ~ s >> s m1/2 m-1 Latex Nanocolloids inNaCl and KCl (Ks/ma) D/L ACEO Flow mM DI Green and Morgan, J Phys Chem, 1999
Enhanced Particle Conductivity Tangential Current in Collapsed Layer: No Charging Collapsed Layer Conductance s s~(4RT/FEs) insulator a p=Ks/a=ss/a RC Time for Particle R~a2 RC-1~a-1 Cs=(E2s/8RT)>>CDL Ks=[EsD/5(RT/F)]
10-1 charge/nm2 Es=105 V/cm Low-Conductivity Theory m Independent Carboxylated Latex colloids * DI mM
n0 > n0* External potential of Insulated particle Normal Charging of Thick Diffuse Layer Basuray and HCC Phy Rev E (2007) tangential diffusion normal charging tangential conduction R~a/m C~/ (RC)-1~D/ (a) ~m1/2
nDEP 282 nm 557 nm nDEP pDEP pDEP m1/2 nDEP nDEP pDEP 93 nm 216 nm MW Theory pDEP Green & Morgan 1999
Pole Charging for Thin Diffuse LayerLarger Resistance due to Diminishing Surface Current z Small Polar Capacitor
High-Conductivity Collapse Green & Morgan 1999 Slope= -1 Colllapsed Layer m0 m1/2 Slope= 0 a2/D Diffuse Layer Slope= -2 Pole Charging m-1 D/a DI mM
Diffuse Layer Capacitance Diffusion/Surface Charge : Collapsed and Diffuse Layer Capacitance And Conductance m1/2 Pole Capacitor Collapsed Layer Conductance m-1 * (D/L) (D/a2)(/a)2 ac=(mD/Ks)~200 nm No Adjustable Parameters Explicit Cross-Overs HCC, Basuray & Wei (2008) = s
AC Electrokinetics of Nanocolloids:Tuning in the Desired Physics1 KHz < < 10 MHzD/2, D/ sa, D/a, D/L, Dp/2 Surface Charge/Diffusion Effects Collapsed and Diffuse Debye Layers Capacitance & Conduction Surface/Membrane Molecular Characterization Diagnostics and Drug Screening Compound Particle Synthesis NanoColloid/Molecule Surface Docking
Post-Docs: S. Senapati, G. Yossifon, P. Wang PhD Students: Z. Gagnon, S. Basuray, X. Cheng, N. Chetwani Collaborators: Y. E. Zhu, D. Lodge, J. Feder, D.T. Leighton. M. Kuno, D. Jena, H. Xing (ND) Weijia Wen (HKUST) Hsien-Chang Chang, I. -F. Cheng, H.-H. Wei (Cheng Kung, Taiwan) F. Plouraboue (Toulouse), Y.-L. Chen (Acad. Sinica,Taiwan) J. Kreft (UT Arlington), S-C Wang (Chong Cheng, Taiwan) Alumni (since 2000): J. Keith (Michigan Tech) *D. Kopelevich (Florida) P. Takhistov (Rutgers) *A.Minerick (Mississippi State) S. Thamida (IISci, Bangalore) *J. Wu (Tennessee) G. Arya (UC San Diego) L. Yeo (Monash Univ), S. Sengupta (Missouri) Z. Chen (Wuhan Univ, Luojia Prof) *NSF Career Awardees Y. Ben (Haliburton) R. Zhou (Rohm & Haas) P. Wang (Chevron) J. Gordon (Midwest Lab.) D. Hou (Merck) S. Maheshwari (Brookbridge)
Center for Microfluidics and Medical Diagnostics www.nd.edu/~changlab
(b) (a) (c) (d) High-Throughput AC Multi-Thread Spinning Yeo, Gagnon and HCC, Biomaterials (2005) Maheshwari & HCC, Adv Materials (2008) Nano-Aerosol Filtration
RC Relaxation Times R • << RC-1 Conductive Current >> RC-1 Capacitor Charging Current C Capacitor Charge Accumulation due to Conductivity Gradient D/2, D/ sa, D/a, D/L, Dp/2
Electrokinetic Equations --symmetric electrolyte Space Charge Density IonTransport Singular Diffusion Term Charge Ionic Strength Surface Charge & Diffusion Electromigration
Nanocolloid Electrophoresis Hoffmann, Basuray, HCC and Zhu (2007) Charging of Macro-Ions < c