550 likes | 938 Views
Entropy coding. Present by 陳群元. constraints. Compression efficiency Computational efficiency Error robustness. Encoding. DCT Reordering Run-level coding Entropy coding. Encoding. DCT Reordering Run-level coding Entropy coding. DCT. Reordering.
E N D
Entropy coding Present by 陳群元
constraints • Compression efficiency • Computational efficiency • Error robustness
Encoding • DCT • Reordering • Run-level coding • Entropy coding
Encoding • DCT • Reordering • Run-level coding • Entropy coding
Reordering • The optimum method of reordering the quantised data depends on the distribution of the non-zero coefficients.
Encoding • DCT • Reordering • Run-level coding • Entropy coding
Run-level coding • Long sequences of identical values (zeros in this case) can berepresented as a (run, level) code • (run) indicates the number of zeros preceding anon-zero value • (level) indicates the sign and magnitude of the non-zero coefficient
Encoding • DCT • Reordering • Run-level coding • Entropy coding
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Generating the HufSman code tree • 1. Order the list of data in increasing order of probability. • 2. Combine the two lowest-probability data items into a ‘node’ and assign the joint probability of the data items to this node. • 3. Reorder the remaining data items and node(s) in increasing order of probability and repeat step 2.
disadvantage • the decoder must use the same codeword set as the encoder • reduces compression efficiency. • calculating the probability table for a large video sequence a significant computational overhead • cannot be done until after the video data is encoded
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Table design Final pair
H.263/MPEG-4 motion vector difference (MVD) • The H.263MPEG-4 differentially coded motion vectors (MVD) • are each encoded as a pair of VLCs, one for the x-component and one for the y-component
H.26L universal VLC (UVLC) • The emerging H.26L standard takes a step away from individually calculated Huffman tables by using a ‘universal’ set of VLCs for any coded element. Each codeword is generated from the following systematic list:
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Huffman Coding • ‘True’ Huffman Coding • Modified Huffman Coding • Table Design • Entropy Coding Example • Variable Length Encoder Design • Variable Length Decoder Design • Dealing with Errors
Ex . encode (0,-1,0,2) 0.394
Arithmetic coding vshuffman • Ideal • 0.394 in this case, which can be represented as a fixed-point number with sufficient accuracy using 9 bits • Huffman: 1;0011;1;0000110=>13 bits
The end • Thank you