1 / 48

Тяжелые ядра в космосе –

Тяжелые ядра в космосе – источник радиационной опасности вблизи  Земли и в межпланетном пространстве. Heavy Nuclei in Space – the Source of Danger in the Vicinity of the Earth and in the Interplanetary Space. Mikhail Panasyuk Moscow State University.

jaunie
Download Presentation

Тяжелые ядра в космосе –

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Тяжелые ядра в космосе – источник радиационной опасностивблизи  Земли и в межпланетном пространстве Heavy Nuclei in Space – the Source of Danger in the Vicinity of the Earth and in the Interplanetary Space Mikhail Panasyuk Moscow State University Space Weather Effects on Humans:in Space and on Earth International Conference Space Research InstituteMoscow, RussiaJune 4-8, 2012

  2. The first “visualization” of HZE GCR (Fe) Apollo –11 N. Armstrong B. Aldrin M. Collins

  3. HZE particles effects Absorbed dose 0,5 Zv Nuclei Electrons

  4. Одиночные сбои и поток ГКЛ HZE particles impact on microchips SEE ## SEE Minimum of SA Maximum of SA Single Events Effects Years

  5. HZE particles in the Earth’s Environment

  6. The Earth’s Radiation Belts ~7Rз Внешний пояс -р до ~ МэВ - е до нескольких МэВ Внутренний пояс -р до сотен МэВ - е до нескольких МэВ

  7. Потоки электронов и протонов различных энергий в плоскости геомагнитного экватора. R - расстояние от центра Земли, выраженное в радиусах Земли. Стабильный пояс электронов с Ee > 20 МэВ выделен жирной линией

  8. Solar wind (H) Energy spectra of cosmic radiation 10 Radiation belts 0 Solar energetic particles lg I Galactic and extragalactic cosmic rays (H) -10 1keV/n 1 MeVn 1 GeVn 1 TeVn lg E (eV/nucl) 3 6 9 12

  9. Низкие высотыLow altitudes (LEO)

  10. Радиационное окружение Земли 400 km ISS

  11. South Atlantic Anomaly h=500km, 1970, B model JSFC12/66(1970) Частицы AE8max Магнитное поле h = 400 km

  12. SEE in the SAA Широта, град ЮАА Долгота, град

  13. протоны, >40 MэВ W

  14. Solar cycle dependence. Proton flux Atmospheric density year

  15. SAA: magnetic field secular variations Secular Variations of Geomagnetic Field (Model IGRF) 1980 1950 2010 • Magnetic field become weaker ( at h = const) • SAA moving to the west

  16. neutrons Shielding CR track p α Mg ~ 25 µ ~ 5 µ Sensitive region Interection region Semiconductor chip

  17. Neutron Environment Solar neutrons GCR protons Local neutrons Albedo neutrons

  18. Secondary protons&neutrons

  19. Local neutrons generation vs S/C mass МИР

  20. Neutron dose equivalent(μSv/h) Neutron dose equivalent rate was estimated using the energy spectrum with the ICRP-74 coefficient . Neutron dose equivalent (Goka et al) (From March 23 to July 7, All orbit)

  21. Altitude dependence of SEE 1250-1350 км 650-750 км 2450-2550 км Спутник APEX, эллиптическая орбита

  22. SEP

  23. Solar wind (H) 1010 Solar Energetic Particles Поток частиц, отн.ед 100 Solar cosmic rays Galactic cosmic rays 10-10 1кэВ/нукл 1 МэВ/нукл 1 ГэВ/ нукл 1 ТэВ/ нукл lgE (эВ/нукл) 3 6 9 12

  24. SEE during SEP’s events and modeling of SEE

  25. SEE at LEO

  26. How many HZE particles in SEP events?

  27. HZE abundance in SEP Nymmik, 2012,private communication

  28. HZE abundance in SEP Nymmik, 2012,private communication Abundance of HZE particles on the tail of SEP’s events is unerestimated?

  29. «Нейтронный отклик» солнечных вспышек “Neutron’s response” of solar flares

  30. Neutron dose equivalent(μSv/h) We have investigated the neutron dose equivalent inside the ISS on the influence of solar flare. Neutron dose equivalent (For 24 hours from 12(UT) on April 15) Animation\animation.htm

  31. Галактические космические лучи Galactic cosmic rays

  32. GCR modulation ?

  33. Instead of conclusions PROBLEMS (just a sketch)

  34. PROBLEMS 1. Limitation of knowledge to estimate the real risk

  35. Роль фрагментов ядерных реакций p +Si • Продукты ядерного взаимодействия протонов КИ с материалом бортовой электроники генерируют с электронно-дырочные пары и дефекты, приводящие к сбою электроники

  36. ## SEE vs LTE

  37. However… Результаты испытаний HXRHPPC на ТЗЧ Lintz et al, “ Single Event Effects Hardening andCharacterization of Honeywell’s RHPPC ProcessorIntegrated Circuit”

  38. Rat’s expedition to Mars Rat’s behavior is changing after 3 month’s of HZE exposure !

  39. Expedition to Mars Do we need one way ticket?

  40. PROBLEMS 2. Limitation of on ground facilities for modeling of space environment

  41. Neutrons in space and in the Earth’s atmosphere

  42. How to minimize risk from HZE? Electronics Onground space qualification tests (certification) with using of accelerator’s facilities – just a black hole for funds What to do ? - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions

  43. Planning of missions Одиночные сбои в ЮАА Spacecraft is a robot, but with elements a manual management by people Широта, град ЮАА Долгота, град

  44. How to minimize risk from HZE? Humans - To combine design/manufacturing process with radiation testing - To imply special soft/scheme/construction decisions to minimize SEE - Planning of missions, new estimation of risks

  45. How to minimize risk from HZE? Humans Planning of missions Probably, we are on a way of developing temporal limitation for long-duration space missions on concept of new risk’s estimation Time – the only real shield against HZE particles for human’s body in space

  46. Thank you

More Related