1 / 36

Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition

Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. 作者 : Jian Yang, David Zhang 讲解人:牛志恒 zhniu@jdl.ac.cn. 报告提纲. 作者介绍 文章介绍 前人相关工作简介 相关基础知识简介 理论描述 实验分析 简单评述 提出问题. 作者的相关信息. Jian Yang EDUCATIONS

jaunie
Download Presentation

Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition 作者 :Jian Yang, David Zhang 讲解人:牛志恒 zhniu@jdl.ac.cn

  2. 报告提纲 • 作者介绍 • 文章介绍 • 前人相关工作简介 • 相关基础知识简介 • 理论描述 • 实验分析 • 简单评述 • 提出问题

  3. 作者的相关信息 • Jian Yang • EDUCATIONS • Ph.D Department of Computer Science, Nanjing University of Science and Technology (NUST), 2002 • M.S Applied Mathematics from Changsha Railway University, 1998 • B.Sc Mathematics from the Xuzhou Normal University, 1995 • PUBLICATIONS • Jian Yang; Frangi, A.F.; Jing-Yu Yang; David Zhang; Zhong Jin; KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on Volume 27,  Issue 2,  Feb. 2005 Page(s):230 - 244 • Jian Yang, David Zhang, Alejandro F. Frangi, Jing-Yu Yang: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1): 131-137 (2004) • Jian Yang, Hui Ye, David Zhang: A new LDA-KL combined method for feature extraction and its generalisation. Pattern Anal. Appl. 7(1): 40-50 (2004) • Jian Yang, Zhong Jin, Jingyu Yang, David Zhang, Alejandro F. Frangi: Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognition 37(10): 2097-2100 (2004) • Jian Yang, Jing-Yu Yang, Alejandro F. Frangi, David Zhang: Uncorrelated Projection Discriminant Analysis And Its Application To Face Image Feature Extraction. IJPRAI 17(8): 1325-1347 (2003) • Jian Yang, Jing-Yu Yang, Alejandro F. Frangi: Combined Fisherfaces framework. Image Vision Comput. 21(12): 1037-1044 (2003) • Jian Yang, Jing-Yu Yang: Why can LDA be performed in PCA transformed space? Pattern Recognition 36(2): 563-566 (2003) • Jian Yang, Jing-Yu Yang, David Zhang, Jian-feng Lu: Feature fusion: parallel strategy vs. serial strategy. Pattern Recognition 36(6): 1369-1381 (2003) • Jian Yang, Jing-Yu Yang: Generalized K-L transform based combined feature extraction. Pattern Recognition 35(1): 295-297 (2002) • Jian Yang, Jing-Yu Yang, David Zhang: What's wrong with Fisher criterion? Pattern Recognition 35(11): 2665-2668 (2002) • Jian Yang, Jing-Yu Yang: From image vector to matrix: a straightforward image projection technique - IMPCA vs. PCA. Pattern Recognition 35(9): 1997-1999 (2002)

  4. 作者的相关信息 • David Zhang(张大鹏) • EDUCATIONS • Ph.D Electrical & Computer Engineering, University of Waterloo, 1994 • Ph.D Computer Science, Harbin Institute of Technology (HIT), 1985 • M.S Computer Science, Harbin Institute of Technology (HIT), 1983 • B.Sc Computer Science, Peking University, Beijing, 1974 • EMPLOYMENT • Adjunct Professor (2002- ) Department of System Design, University of Waterloo, Canada • Guest/Adjunct Professor (2000- ) Shanghai Jiao Tong University / Tsinghua University • Full Professor (1999- ) Department of Computing, Hong Kong Polytechnic University (PolyU) • Associate Professor (1995-1999) Department of Computer Science, City University of Hong Kong (CityU) Department of Computing, Hong Kong Polytechnic University (PolyU) • Adjunct Professor / Department of Computer Science and Engineering Supervisor of PhD (1995- ) Harbin Institute of Technology (HIT), China • Associate Professor (1988-1991) National Key Lab of Pattern Recognition, Institute of Automation Chinese Academy of Science, Beijing, China • Postdoctoral Fellow (1986-1988) Department of Automation, Tsinghua University, Beijing, China • Lecturer (1974-1980) Department of Computer Science, Heilongjiang University, China

  5. SELECTED HONORS • Academic Awards • Project Awards • Supervised Student Awards • Patents • SELECTED ACTIVITIES (1998 - ) • Current Editorial Activities • Conference Organization • Industry Consultants • Leaderships • RESEARCH GRANTS (as Principal Investigator)(1996-) • INVITED TALKS • PARTIAL PUBLICATIONS • BOOKS • BOOK CHAPTERS • SELECTED JOURNAL PAPERS • SELECTED CONFERENCE PAPERS

  6. 文章的相关信息 • 文章出处:IEEE TPAMI • 发表时间:JANUARY 2004 • 相关文献 • J. Yang, J.Y. Yang, “From Image Vector to Matrix: A Straightforward Image Projection Technique—IMPCA vs. PCA,” Pattern Recognition, vol. 35, no. 9, pp. 1997-1999, 2002.

  7. 前人相关工作的介绍

  8. 中文摘要 • 本文引入了2DPCA图像表示方法的一种新技术。与PCA不同, 2DPCA是基于2维图像矩阵而不是1维向量,因而特征提取的时候图像不必预先转化成一个向量。直接使用原始图像矩阵来构建图像协方差矩阵,它的特征向量用来作特征提取。为了检验和评估2DPCA的性能,在ORL、AR和Yale人脸数据库上进行了一系列的实验。在所有实验中2DPCA的识别率都高于PCA。实验结果也显示了2DPCA在特征提取的效率上要更高于PCA。

  9. 文章的组织结构 • INTRODUCTION • TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS • Idea and Algorithm • Feature Extraction • 2DPCA-Based Image Reconstruction • EXPERIMENTS AND ANALYSIS • Experiment on the ORL Database • Experiment on the AR Database • Experiment on the Yale Database • Evaluation of the Experimental Results • CONCLUSION AND FUTURE WORK

  10. 相关基础知识的介绍 • 设样本集为 在 中,均值 ,协方差矩阵 ,分解为 其中 是正交阵, 是对角阵。 于是PCA变换为 。变换后的样本均值为0,协方差矩阵为对角阵 ,它包含了 的所有特征值,其对应的特征向量是不相关的。

  11. 2DPCA • X是n维列向量,A是m×n的图像矩阵,Y是线性变换后的m维投影向量。 • 定义Y的协方差矩阵 的迹为总散度: • 最大化这个准则,就找到了最优的投影方向X使得投影后的向量Y分得最开。

  12. 表示为: • 所以 • 我们记

  13. 称作图像协方差(散度)矩阵。从定义可以看出它是非负定的n×n维矩阵。假设有M张训练图像,第j张图像表示为 ,所有训练图像的均值记作 。 • 准则化为

  14. 最大化上式的X称作最优投影轴。最优投影轴是 的最大特征值对应的特征向量。通常一个最优投影轴是不够的,因此选对应特征值最大的取前d个相互正交的单位特征向量作为最优投影轴。

  15. 证明:

  16. 特征提取 • 2DPCA的最优投影向量 用来做特征提取。对于给定的样本图像A,有 • 得到的投影特征向量 称作样本图像A的主成分(向量)。 • 主成分向量形成m×d的矩阵 称作样本图像A的特征矩阵或特征图像。

  17. 分类方法 • 采用最近邻分类。任意两个图像的特征矩阵 和 之间的距离定义为: • 给定测试样本B,如果 ,并且 ,则分类结果是 。

  18. 基于2DPCA的图像重构 • 主成分向量是 ,令 , ,那么 。 • 由于 是正交的,所以图像A的重构图像为: • 令 ,它的大小和图像A一致,称作图像A的重构子图。当d=n时,是完全重构;当d<n时,是近似重构。

  19. 实验

  20. ORL

  21. AR

  22. Yale

  23. 结论 • 2DPCA与PCA(Eigenfaces)比较 • 优点: • 提取特征的方法简单、直接 • 实验对比中显示识别率高 • 提取特征的计算效率高 • 缺点: • 表示图像时需要的系数多,因此需要更多的存储空间 • 分类所需的计算时间稍多

  24. 为什么2DPCA的性能优于PCA • 对于小样本数据(比如人脸识别)来说, 2DPCA更加稳定。因为它的图像协方差矩阵比较小。 2DPCA比PCA能更加精确的刻画图像的协方差矩阵

  25. 对文章的评价 • 文章对传统的PCA进行了对2D的扩展,虽然理论描述简单,但却想无人之想,做无人所做。善哉!善哉! • 实验大量而丰富,效果显著,但是否在现实中实用值得讨论。

  26. 提出的问题 • PCA表示图像时,近似图像与原始图像具有最小均方误差(MSE)。2DPCA是否也具有相似的性质? • 2DPCA需要更多的系数,虽然后面加上PCA可以降维,但是这样做的道理并不清晰。是否能推出更有效的方法? • 文中实验可以看到数据量偏少(人数),对更大的数据量(比如千人),更复杂的变化2DPCA是否依然有效?

  27. 谢谢大家!

More Related