220 likes | 588 Views
Part V The Generalized Linear Model. Chapter 16 Introduction. GENERAL LINEAR MODELS. ε ~ Normal. R: lm(). ANOVA. Multiple Linear Regression. t-test. Simple Linear Regression. ANCOVA. GENERALIZED LINEAR MODELS. Linear combination of parameters . R: glm(). Multinomial. Binomial.
E N D
Part VThe Generalized Linear Model Chapter 16 Introduction
GENERAL LINEAR MODELS ε ~ Normal R: lm() ANOVA Multiple Linear Regression t-test Simple Linear Regression ANCOVA
GENERALIZED LINEAR MODELS Linear combination of parameters R: glm() Multinomial Binomial Poisson GENERAL LINEAR MODELS ε ~ Normal R: lm() ANOVA Multiple Linear Regression t-test Simple Linear Regression ANCOVA Exponential Gamma Negative Binomial Inverse Gaussian
Generalized Linear Model (GzLM)Introduction • Assumptions of GLM not always met using biological data
Generalized Linear Model (GzLM)Introduction • Assumptions of GLM not always met using biological data • Transformations typically recommended • We can randomize… • Assumes parameter estimates (means, slopes, etc.) are correct • But a few large counts or many zeros will influence skew our estimates
Generalized Linear Model (GzLM)Introduction • Assumptions of GLM not always met using biological data • Transformations typically recommended • We can randomize… • Assumes parameter estimates (means, slopes, etc.) are correct • But a few large counts or many zeros will influence skew our estimates • Best to use an appropriate error structure under the Generalized Linear Model framework
Generalized Linear Model (GzLM)Introduction Poisson error structure
Generalized Linear Model (GzLM)Introduction Binomial error structure
Generalized Linear Model (GzLM)Advantages • Assumptions more evident • Decouples assumptions • Improves quality • Greater flexibility
Generalized Linear Model (GzLM)Advantages • Assumptions more evident • Decouples assumptions • Improves quality • Greater flexibility
Part VThe Generalized Linear Model Chapter 16.1 Goodness of Fit
Goodness of Fit - The Chi-square statistic • Have to learn a new concept to apply GzLM: • Goodness of Fit • Chi-square statistic • G-statistic
Classic Chi-square Statistic ExampleGregor Mendel’s Peas Purple: White:
Classic Chi-square Statistic ExampleGregor Mendel’s Peas χ2 = 0.3907 df = 1 p = 0.532
Classic Chi-square Statistic ExampleGregor Mendel’s Peas • Deviation from genetic model (3:1) not significant χ2 = 0.3907 df = 1 p = 0.532
Goodness of Fit - The G-statistic • Can deal with complex models • Based in likelihood
Goodness of Fit - The G-statistic Smaller deviation smaller G-statistic G-statistic p-value = 0.53
Improvement in Fit - ΔG • Next time we will… • Compare G values (ΔG) to assess improvement in fit of one model over another