1 / 13

Central Dogma:

Central Dogma:. Review of Transcription and Translation in bacteria. http://cats.med.uvm.edu/cats_teachingmod/microbiology/courses/gene_regulation/images/dij.tc.elong1.jpg. Sense, antisense. Compare the sense strand of the DNA to the mRNA.

Download Presentation

Central Dogma:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Central Dogma: Review of Transcription and Translation in bacteria

  2. http://cats.med.uvm.edu/cats_teachingmod/microbiology/courses/gene_regulation/images/dij.tc.elong1.jpghttp://cats.med.uvm.edu/cats_teachingmod/microbiology/courses/gene_regulation/images/dij.tc.elong1.jpg

  3. Sense, antisense Compare the sense strand of the DNA to the mRNA. Note that mRNA synthesis will be 5’ to 3’ and antiparallel. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/SenseStrand.gif

  4. The Process of Transcription-2 • RNA synthesis continues (Elongation), only one DNA strand (template) is transcribed. • RNA nucleotides, complementary to bases on DNA strand, are connected to make mRNA • Termination: must be a stop sign, right? • In bacteria, hairpin loop followed by run of U’s in the RNA. Of course, the DNA must code for complementary bases and a run of A’s. See next. Most common. OR • Termination factor “rho”. Enzyme.Forces RNA polymerase off the DNA.

  5. Termination of Transcription in Bacteria The hairpin loop destabilizes the interactions between the DNA, mRNA, and polymerase; U-A basepairs are very weak, and the complex falls apart. http://www.blc.arizona.edu/marty/411/Modules/Weaver/Chap6/Fig.0649ac.gif

  6. Transcription in prokaryotes • As mRNA is made, it is ready to use. • Info from more than one gene is typically found on one mRNA molecule. • Simpler process than in eukaryotes • no introns to remove • no cap or poly-A tail • no nuclear membrane to transport through • Transcription is expensive: each NTP leaves behind 2 Pi; like spending 2 ATP for every base used.

  7. The Genetic Code • Four bases taken how many at a time? Need to code for 20 different amino acids. • Each base = 1 amino acid: only 4 • Every 2 bases = 1 a.a.: 16 combinations, 4 short. • Every 3 bases: 64 combinations, enough. • Every 3 bases of RNA nucleotides: codon • Each codon is complementary to 3 bases in one strand of DNA

  8. Properties of the Genetic Code • Code is unambiguous: 1 codon always specifies only 1 amino acid. • Code is degenerate: although unambiguous, an amino acid can be coded for by more than one codon. • Punctuated: certain codons specify “start” and “stop”. • Universal: by viruses, both prokaryotic domains, and eukaryotes (except for some protozoa, mitochondria). • Ordered: similar codons specify the same amino acid; see especially the 1st two bases in the codon.

  9. The Genetic Code-2 http://www.biology.arizona.edu/molecular_bio/problem_sets/nucleic_acids/graphics/gencode.gif

  10. Bacterial ribosomes • Prokaryotic ribosomes are 70S; eukaryotic are 80S • S is Svedberg unit, how fast a particle travels during centrifugation. Affected by both mass and shape. • Large subunit: 50 S • 33 polypeptides, 5S RNA, 23 S RNA • Small subunit: 30 S • 21 polypeptides, 16S RNA • Note that 30 + 50 is not 70 • Ribosome structure and differences between prokaryotes and eukaryotes are important. • rRNAs important in taxonomy to be discussed later • Differences are the basis for success of many antibiotics

  11. Translation • Literally, information translated from language of nucleotides to that of amino acids • Ribosomes (large and small subunits), mRNA, tRNAs, amino acids, and source of energy. • And various protein factors • Ribosomes attach to mRNA, tRNAs read codons, match amino acid to codon and ribosome connects amino acids to make proteins. • mRNA has start codon AUG and stop codons. • Look for animations on line • http://www.ncc.gmu.edu/dna/ANIMPROT.htm; http://www.stolaf.edu/people/giannini/flashanimat/molgenetics/translation.swf

  12. tRNA: the decoder a.a. attaches here anticodon http://www.designeduniverse.com/articles/Nobel_Prize/trna.jpg

  13. Simultaneous transcription and translation • No processing, no nucleus; mRNA already where the ribosomes are, so they get started quickly. http://opbs.okstate.edu/~petracek/Chapter%2027%20Figures/Fig%2027-30.GIF

More Related