330 likes | 476 Views
Jet dynamics , stability and energy transport. Manel Perucho -Pla Universitat de València High Energy Phenomena in Relativistic Outflows III Barcelona - June 30th, 2011. Outline. Introduction The sub-parsec scales : CD instabilities .
E N D
Jet dynamics, stability and energy transport ManelPerucho-Pla Universitat de València HighEnergyPhenomena in RelativisticOutflows III Barcelona - June 30th, 2011
Outline • Introduction • The sub-parsec scales: CD instabilities. • The parsec scales and beyond: KH instabilities. • Nonlineareffects. • Thelargestscales: energydeposition in theambient. • A global (and personal) view: why are jets so stable.
Introduction jet power AGN Carilli FRII FRI A. Bridle’sgallery
Introduction jet power AGN Carilli FRII FRI A. Bridle’sgallery
Introduction jet power AGN Carilli FRII FRI A. Bridle’sgallery
Introduction S6 in NGC 7793 Pakull et al., Soria et al. 2010 MICROQUASARS ~20 sourceswithdetectedjetsinthegalaxy (Massi ’05, Ribó ’05). Cygnus X-1 Gallo et al. 2005 Migliari et al. SS 433
Introduction Copy and paste from Phil Hardee’stalk at IAU 275 meeting (withpermission) .
The sub-parsec scales: CD instability Mizuno et al. (2009, 2010, seeposter) Sub-Alfvénicregime Rj = a/2: Jet flowsthroughkink Rj = 4a: Kinkpropagateswiththeflow The position of thevelocityshearwithrespecttothecharacteristicradius of the magneticfield has animportanteffectonthepropagation of the CD instabilities . CD INSTABILITY Thereisanefficientconversion of energyfromthePoyinting flux toparticles.
The sub-parsec scales: CD/KH 3D isovolume of density with B-field lines show the jet is disrupted by the growing KH instability Longitudinal cross section y y z x Transverse cross section Mizuno et al. 2007 Non-relativistic: Hardee & Rosen 1999, 2002: Helical B fieldstabilizesthe jet (magnetictension).
The parsec scales and beyond: KH instability Peruchoet al. (2004a, 2004b) Initialmodel • Parameters: • Lorentz factor. • Rest-massdensitycontrast. • Specificinternalenergy. • Pressureequilibrium. Linear phase
The parsec scales and beyond: KH instability Axial velocitypert. Pressurepert. SATURATION Perp. velocitypert. • -KH instabilitiessaturatewhentheamplitude of theperturbation of axial velocity (in the jet referenceframe) reachesthespeed of light (Hanasz 1995, 1997).
The parsec scales and beyond: KH instability Peruchoet al. 2005, 2007 TIME Sheared jet (d=0.2 Rj) Lorentz factor 20 Sheared jet (d=0.2 Rj) Lorentz factor 5 Seealso short λsaturation (Hardee 2011)
The parsec scales and beyond: KH instability • UST1: efficientlymixed and sloweddown. • UST2: progressivemixing and slowing. • ST: resonantmodesavoiddisruption and generate a hotshearlayerthatprotectsthefastcore.
The parsec scales and beyond: KH instability Peruchoet al. 2005 • Shearlayer (mean profiles of variables). • Upperpanels: thermodynamical variables. • Lowerpanels: dynamical variables. UST1 UST2 ST specific internal energy tracer rest mass density Axial velocity Norm. Lorentz factor Norm. Axial momentum
The parsec scales and beyond: KH instability cold hot Lorentz factor cold • 3D RHD simlations of jet stabilityusing RATPENAT. • 5123 =1.342 108 cells • 128 processors • 21-28 days Peruchoet al. 2010
The parsec scales and beyond: KH instability Axial momentum in the jet material versus time 75 % < 10 % • 3D RHD simlations of jet stabilityusing RATPENAT. • 5123 =1.342 108 cells • 128 processors • 21-28 days Peruchoet al. 2010
The parsec scales and beyond: KH instability Overpressured jet standing shocks Agudo et al. 2001 KH pinchinginstabilitiestriggeredby aninjectedperturbation. Differentstructuresmayappear at differentfrequencies in jets with transversal structure. Perucho et al. 2006
The parsec scales and beyond: KH instability 3C120 Gómez et al. 2000 3C111 Kadler et al. 2008
The parsec scales and beyond: KH instability Overpressured jet standing shocks Agudo et al. 2001 KH pinchinginstabilitiestriggeredby aninjectedperturbation. Differentstructuresmayappear at differentfrequencies in jets with transversal structure. Perucho et al. 2006
The parsec scales and beyond: KH instability 0836+710: Perucho et al., in preparation
Non-linear effects Instabilitieswithlargeamplitude: Rossi et al. 2008 Recollimation shocks: Perucho & Martí 2007
Non-linear effects Shockedwind SNR Shocked ISM ISM Bosch-Ramon, MP, Bordas 2011 Shockedwind Shocked ISM ISM Inhomogeneousambientmedium Meliani & Keppens 2008
Non-linear effects Wind-jet interaction in massive X-raybinaries 6 1011 cm ~ 0.04 AU Image: NASA/ESA wind from the star y 2 1012 cm ~ 0.13 AU x 6 1010 cm ~ 0.004 AU z Rorb ~ 2 1012 cm
Non-linear effects Wind-jet interaction in massive X-ray binaries:3D simulations Perucho, Bosch-Ramon & Khangulyan 2010 t = 977 s Pj= 3 1036erg/s Pj= 1037erg/s t = 192 s
Non-linear effects Wind-jet interaction in massive X-raybinaries:3D simulations Perucho& Bosch-Ramon, in preparation Inhomogeneouswind. Pj= 3 1036erg/s Inhomogeneouswind. Pj= 1037erg/s
The largest scales: Energy deposition in the ambient • MS0735+7421 (McNamara et al. 2005). • 200 kpcdiametercavities. • Shock-wave (M=1.4). • pV=1061 erg. • T=108yr. • Ps=1.7 1046 erg/s (frompV).
The largest scales: Energy deposition in the ambient • 2D axisymmetrichydrosimulationswithRATPENATusing up to 140 processors (added as the jet grows) duringmonths... ≈106computationalhoursforthewholeproject. • Jets injected at 1 kpcinto a King-profilefordensity (Hardcastle et al. 2002, Perucho & Martí 2007) in hydrostatic. • CorrespondingDarkMatterdistribution of 1014 MΘwithin 1 Mpc. • Powers: 1044 erg/s (J3 - leptonic) – 1045 erg/s (J1 –leptonic, J4 - baryonic) – 1046 erg/s (J2 - leptonic). • Jet radius: 100 pc. Jet velocity: 0.9 – 0.99 c • Injectedduring16 to 50 Myr. Thesimulations reproduce the jet evolution up to200 Myr. • Resolution: 50x50 pcor 100x100 pc per cell in the central region (Total 16000x2000 cells, 800 /900 kpc x 500 kpc).
The largest scales: Energy deposition in the ambient 200 Myr 1046 erg/s Perucho et al. 2011, submitted
The largest scales: Energy deposition in the ambient Perucho et al. 2011, submitted Red: ambient. Blue: jet. M≈30 >1011 MΘof shockedambient gas. Vbs= 0.044 – 0.1 c Ourparameters (consistent) Mbs= 10 – 30 Martí et al. (1997) Usual parameters in newtoniansimulations Vbs= 0.009 – 0.015 c Mbs= 3 – 5
The largest scales: Energy deposition in the ambient 1046 erg/s Schlierenplot: enhanceddensitygradients.
The largest scales: Energy deposition in the ambient 1044 erg/s
A global (and personal) view: Why are jets so stable • Initialexpansionphase: the jet generates a bow-shock and itissurroundedbymixed jet and ambient material. • Implicationswrtinstabilities. • Nonlinearprocesses can affect jet stability: • Reconfinement shocks. • Inhomogeneities in theambientmedium. • Changes at injection (perturbations). • Massloadingbystellarwinds and directinteractionwiththeambientmedium. • Jets are notstable!!!!
A global (and personal) view: Why are jets so stable • BUT Somestabilizingmechanisms: • Certainconfigurations of themagneticfield (helicalfield). • Saturationduetorelativisticlimit. • Short λsaturation. • Resonantmodes. • Pressureconfinement (temporal). • Energy and momentum are conserved! • The jets thatwesee at thelargestscalescouldbetheresult of a series of non-linear processes, involvingstrongchanges in theircomposition.