230 likes | 607 Views
KULIAH 12. MULTICOLLINEARITY. What’s Multicolinearity ?. Nature of the problem: X’X matrix must not be singular why? Ada hubungan linier antar beberapa ( atau semua ) variabel bebas . Perfect: Not perfect:. ilustrasi. Penyebab.
E N D
KULIAH 12 MULTICOLLINEARITY
What’s Multicolinearity? • Nature of the problem: X’X matrix must not be singular why? • Ada hubungan linier antarbeberapa (atausemua) variabelbebas. • Perfect: • Not perfect:
Penyebab • Metodepengumpulan data,sampeldiambildaripopulasidgnlingkupterbatas • Keterbatasan model/populasi, ex: Y= konsumsilistrik, X1 = pendapatanruta, X2 = luasrumah • Spesifikasi model, ex: menambahkanvariabelpolinomialpada data X ygterbatas • Overdetermined model: #paramater > # obs • Common trend, ex: income, poupulation, wealth growing over time at more or less the same rate
Efekthdestimasi • Perfect collinearity: no coefficient estimates , s.e. = ∞ ! Apaarti ? • High collinearity: maybe there are coefficient estimates , s.e. = very large Bgmdgn CI? • BgmkabarBLUE?
R2tinggivs t-value ApakomentarAnda ?
Ceklbhljt ApakomentarAnda?
Sensitivitasthdperubahan data Estimasi parameter tidakstabil
Diagnosa (ingat-2 tugasyl !) • 1. High R2 but few significant t ratios. • 2. High pair-wise correlations among regressors. (tapikdgterjadijugameskirijrendah) • 3. Examination of partial correlations. Misal: = 1 if rij= 0.5 R2tinggitapi partial-R2rendah
Diagnosa (ingat-2 tugasyl !) • 4. Auxiliary regressions. • to regress each Xi on the remaining X variables and compute the corresponding R2 (R2i ) • Fi sig Xicollinearity with other X • Rule of thumb: R2i >R2 multicollinearity problem
5. Eigenvalues and condition index. (SAS) • -------10 ---CI----30--------- • 6. Tolerance (TOL) and variance inflation factor (VIF). severe low moderate strong
VIF • r23 = koef. korelasiantara X2 dan X3 • r23 , , • r23 = 1 ?
VIF • Kecepatankenaikanvar-covar variance inflation factor (VIF)
VIF – RLB dgn k-variabel • VIF prob. multikolinierity • Rule of thumb: VIF > 10 high multicollinearity • 0 ≤ TOLj ≤ 1
Remedial • Do nothing ??! • 1. Apriori information: berdasarteori or pengalamansebelumnya • didapat didapatdarihubungan
Remedial • 2. Combining cross-sectional and time series data. • Time series view: Price & income sgtberkorelasi multikolinieriti • estimate regresi (time series) • Dimana (regresicross section)
Remedial • 3. Dropping a variable(s) and specification bias. • Ex: consumption = f (income, wealth) (cthsebelumnya) • income & wealth berkorelasi hapus wealth dari model • Tapijikateorimenyatakanbhwfungsidiatasberlaku, makamenghapus wealth dari model akanmengakibatkan bias spesifikasi. • True model: • Estimated by: • b32 = koefregresi b3atas b2 • Jika > 0 b12 over estimate dariβ2 (bias +) • Jika< 0 b12 under estimate dariβ2 (bias -)
Remedial • 4. Transformasivariabel • First differencing • Ratio transformation • Y = konsumsi, X2 = PDB, X3 = JmlPddk • PDB & JmlPddk “grow over time” berkorelasi • Regresi per kapitapenduduk: Be careful of new problem: serially correlated error, heteroscedasticity,
Remedial • 5. Menambahjumlah data (observasi) • n = 10 • n = 40 • 6. Reducing collinearity in polynomial regressions. Transform variables in deviation form. • 7. Other methods of remedying multicollinearity, ex: factor analysis, ridge regression, principal component regression