210 likes | 225 Views
This visualization demonstrates Dijkstra's algorithm with two levels of buckets to find shortest paths in a network. It shows how the algorithm updates distance labels and buckets, scans arcs, selects nodes, and adjusts bucket numbers. The algorithm terminates when all nodes are permanently labeled.
E N D
15.082J & 6.855J & ESD.78JVisualizations Dijkstra’s Algorithm with two levels of buckets
∞ ∞ 0 ∞ ∞ ∞ ∞ 2 3 4 5 6 Initialize Initialize distance labels 46 2 4 8 18 Initialize buckets. 22 25 26 1 6 Select the first nonempty lower bucket. Then select an element of the bucket. 1 41 25 37 3 5 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 0 1 2 3 4 5 6 7 8 9 1
1 ∞ Update ∞ ∞ 8 Scan arcs out of node 1 and update data structures 46 2 4 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 41 ∞ ∞ 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 2 3 4 0 1 2 3 4 5 6 7 8 9 5 1 6
1 ∞ Find Min Lower Bucket ∞ 8 Find min non-empty lower bucket. Select a node in the bucket. 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 41 ∞ 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 4 0 1 2 3 4 5 6 7 8 9 5 2 6
1 ∞ Update ∞ 8 54 Scan arcs out of node 2 and update distance labels and buckets. 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 33 30 41 ∞ 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 4 0 1 2 3 4 5 6 7 8 9 5 2 6
1 ∞ Find Min Lower Bucket 54 8 Scan lower bucket for first non-empty bucket. If none exist, then go to scanning upper buckets. 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 33 30 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 4 5 0 1 2 3 4 5 6 7 8 9 6
1 ∞ Find Min Upper Bucket 54 8 Scan upper buckets to find the first non-empty bucket. 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 33 30 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 4 5 0 1 2 3 4 5 6 7 8 9 6
1 ∞ Move contents down 54 8 Adjust bucket numbers of lower buckets and move contents of upper bucket to lower buckets 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 33 30 30-39 40-49 50-59 60-69 70-79 80-89 90-99 3 4 5 30 0 1 31 32 2 3 33 4 34 5 35 6 36 7 37 8 38 9 39 6
1 ∞ Find Min Lower Bucket 54 8 Find the first nonempty lower bucket and select a node in the bucket 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 25 37 3 5 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 30 31 32 33 34 35 36 37 38 39 5 3 6
1 ∞ Update 54 8 Scan arcs out of node 5 and update distance labels and buckets. 46 2 4 2 8 18 0 22 25 26 ∞ 1 6 41 55 25 37 3 5 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 30 31 32 33 34 35 36 37 38 39 5 3 6
1 Find Min Lower Bucket 54 8 Find the first nonempty lower bucket and select a node in the bucket 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 3 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 6 30 31 32 33 34 35 36 37 38 39 3
1 Update 54 8 Scan arcs out of node 3 and perform updates. 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 3 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 6 30 31 32 33 34 35 36 37 38 39 3
1 Find Min Lower Bucket 54 8 Scan lower buckets looking for a non-empty bucket. 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 6 30 31 32 33 34 35 36 37 38 39
1 Find Min Upper Bucket 54 8 Scan upper buckets looking for a non-empty bucket. 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 40-49 50-59 60-69 70-79 80-89 90-99 4 6 30 31 32 33 34 35 36 37 38 39
1 Move contents down 54 8 Adjust bucket numbers of lower buckets and move contents of upper bucket to lower buckets. 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 50-59 60-69 70-79 80-89 90-99 4 6 30 50 51 31 32 52 33 53 34 54 35 55 36 56 37 57 58 38 59 39
1 Find Min Lower Bucket 54 8 Select the min non-empty lower bucket. Select an element from the bucket. 46 2 4 2 4 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 60-69 70-79 80-89 90-99 50 51 52 53 54 55 56 57 58 59 4 6
1 Update 54 8 Scan arcs out of node 4 and perform all updates. 46 2 4 2 4 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 60-69 70-79 80-89 90-99 50 51 52 53 54 55 56 57 58 59 4 6
1 Find Min Lower Bucket 54 8 Scan lower buckets looking for a non-empty bucket. Select a node of the bucket 46 2 4 2 6 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 60-69 70-79 80-89 90-99 50 51 52 53 54 55 56 57 58 59 6
1 Update 54 8 Scan arcs out of node 6, and perform updates 46 2 4 2 6 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 60-69 70-79 80-89 90-99 50 51 52 53 54 55 56 57 58 59 6
1 Termination 54 8 All nodes are permanent. The algorithm terminates with the optimal shortest path tree. 46 2 4 2 8 18 0 22 25 26 1 6 41 55 25 37 3 5 5 33 30 60-69 70-79 80-89 90-99 50 51 52 53 54 55 56 57 58 59
MITOpenCourseWare http://ocw.mit.edu 15.082J / 6.855J / ESD.78J Network Optimization Fall 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.