1 / 58

Power in QTL linkage: single and multilocus analysis

Power in QTL linkage: single and multilocus analysis. Shaun Purcell 1,2 & Pak Sham 1 1 SGDP, IoP, London, UK 2 Whitehead Institute, MIT, Cambridge, MA, USA. Overview. 1) Brief power primer 2) Calculating power for QTL linkage analysis

jbrady
Download Presentation

Power in QTL linkage: single and multilocus analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Power in QTL linkage: single and multilocus analysis Shaun Purcell1,2 & Pak Sham1 1SGDP, IoP, London, UK 2Whitehead Institute, MIT, Cambridge, MA, USA

  2. Overview • 1) Brief power primer • 2) Calculating power for QTL linkage analysis • Practical 1 : Using GPC for linkage power calculations • 3) The adequacy of additive single locus analysis • Practical 2 : Using Mx for linkage power calculations

  3. YES NO Test statistic 1) Power primer

  4. Sampling distribution if H0 were true Sampling distribution if HA were true Critical value   P(T) T

  5. STATISTICS Nonrejection of H0 Rejection of H0 Type I error at rate  Nonsignificant result H0 true R E A L I T Y Type II error at rate  Significant result HA true POWER =(1- )

  6. Critical value Impact of  effect size, N P(T) T  

  7. Critical value Impact of  alpha P(T) T  

  8. 2) Power for QTL linkage • For chi-squared tests on large samples, power is determined by non-centrality parameter () and degrees of freedom (df) •  = E(2lnLA - 2lnL0) • = E(2lnLA ) - E(2lnL0) • where expectations are taken at asymptotic values of maximum likelihood estimates (MLE) under an assumed true model

  9. Linkage test • HA • H0 for i=j for ij for i=j for ij

  10. For sib-pairs under complete marker information Determinant of 2-by-2 standardised covariance matrix = 1 - r2 Linkage test Expected NCP Note: standardised trait See Sham et al (2000) AJHG, 66. for further details

  11. Concrete example • 200 sibling pairs; sibling correlation 0.5. • To calculate NCP if QTL explained 10% variance: • 200 × 0.002791 = 0.5581

  12. Approximation of NCP NCP per sibship is proportional to - the # of pairs in the sibship (large sibships are powerful) - the square of the additive QTL variance (decreases rapidly for QTL of v. small effect) - the sibling correlation (structure of residual variance is important)

  13. P(IBD at M | IBD at QTL) IBD at QTL 0 1 2 IBD at M 0 1 2

  14. Using GPC • Comparison to Haseman-Elston regression linkage • Amos & Elston (1989) H-E regression • - 90% power (at significant level 0.05) • - QTL variance 0.5 • - marker & major gene completely linked (θ= 0) •  320 sib pairs • - if θ= 0.1 •  778 sib pairs

  15. GPC input parameters • Proportions of variance • additive QTL variance • dominance QTL variance • residual variance (shared / nonshared) • Recombination fraction ( 0 - 0.5 ) • Sample size & Sibship size ( 2 - 8 ) • Type I error rate • Type II error rate

  16. GPC output parameters • Expected sibling correlations • - by IBD status at the QTL • - by IBD status at the marker • Expected NCP per sibship • Power • - at different levels of alpha given sample size • Sample size • - for specified power at different levels of alpha given power

  17. GPC http://ibgwww.colorado.edu/~pshaun/gpc/

  18. From GPC • Modelling additive effects only • Sibships Individuals • Pairs 216 (320) 432 • Pairs ( = 0.1) 543 (778) 1086 Trios ( = 0.1) 179 537 Quads ( = 0.1) 90 360 Quints ( = 0.1) 55 275

  19. Practical 1 • Using GPC, what is the effect on power to detect linkage of : • 1. QTL variance? • 2. residual sibling correlation? • 3. marker-QTL recombination fraction?

  20. Pairs required (=0, p=0.05, power=0.8)

  21. Pairs required (=0, p=0.05, power=0.8)

  22. Effect of residual correlation • QTL additive effects account for 10% trait variance • Sample size required for 80% power (=0.05) • No dominance •  = 0.1 • A residual correlation 0.35 • B residual correlation 0.50 • C residual correlation 0.65

  23. Individuals required

  24. Effect of incomplete linkage

  25. Effect of incomplete linkage

  26. Some factors influencing power • 1. QTL variance • 2. Sib correlation • 3. Sibship size • 4. Marker informativeness & density • 5. Phenotypic selection

  27. Marker informativeness: • Markers should be highly polymorphic • - alleles inherited from different sources are likely to be distinguishable • Heterozygosity (H) • Polymorphism Information Content (PIC) • - measure number and frequency of alleles at a locus

  28. Polymorphism Information Content • IF a parent is heterozygous, • their gametes will usually be informative. • BUT if both parents & child are heterozygous for the same genotype, • origins of child’s alleles are ambiguous • IF C = the probability of this occurring,

  29. Singlepoint θ1 Marker 1 Trait locus Multipoint T1 T2 T3 T4 T5 T11 T12 T13 T14 T15 T6 T7 T8 T9 T10 T16 T17 T18 T19 T20 Marker 1 Trait locus Marker 2

  30. Multipoint PIC: 10 cM map

  31. Multipoint PIC: 5 cM map

  32. The Singlepoint Information Content of the markers: • Locus 1 PIC = 0.375Locus 2 PIC = 0.375Locus 3 PIC = 0.375 • The Multipoint Information Content of the markers: • Pos MPIC • -10 22.9946 • -9 24.9097 • -8 26.9843 • -7 29.2319 • -6 31.6665 • -5 34.304 • -4 37.1609 • -3 40.256 • -2 43.6087 • -1 47.2408 • 0 51.1754 • 1 49.6898 • … • meaninf 50.2027

  33. Selective genotyping Unselected Proband Selection EDAC Maximally Dissimilar ASP Extreme Discordant EDAC Mahanalobis Distance

  34. Sibship NCP 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 4 3 2 1 -4 0 -3 Sib 2 trait -1 -2 -1 -2 0 1 -3 2 Sib 1 trait 3 -4 4 Sibship informativeness : sib pairs

  35. Impact of selection

  36. E(-2LL) Sib 1 Sib 2 Sib 3 • 0.00121621   1.00    1.00    • 0.14137692 -2.00   2.00   0.00957190  2.00    1.80   2.20 0.00005954  -0.50 0.50   

  37. 3) Single additive locus model • locus A shows an association with the trait • locus B appears unrelated Locus B Locus A

  38. Joint analysis • locus B modifies the effects of locus A: epistasis

  39. Partitioning of effects • Locus A • Locus B M P M P

  40. 4 main effects M Additive effects P M P

  41. 6 twoway interactions M P  Dominance M P 

  42. 6 twoway interactions M M  P P Additive-additive epistasis  M P  M P 

  43. 4 threeway interactions M P M   Additive-dominance epistasis P P M   M P M   M P P  

  44. 1 fourway interaction Dominance-dominance epistasis M P M P   

  45. One locus • Genotypic • means • AA m + a • Aa m + d • aa m - a 0 -a +a d

  46. m m m – aA + aA – aa + aB + aB + da + dA + aa + aB m m m + aA – aA + dB + ad + dA + dB + dB – ad m m m – aA – aB – aa – da – aB – aB + aA + dA + aa Two loci • AA Aa aa • BB • Bb • bb + dd

  47. IBD locus 12 Expected Sib Correlation 00 2S 012A/2 + 2S 022A + 2D + 2S 102A/2 + 2S 112A/2 + 2A/2 + 2AA/4 + 2S 122A/2 + 2A + 2D + 2AA/2 + 2AD/2 + 2S 202A + 2D + 2S 212A + 2D + 2A/2 + 2AA/2 + 2DA/2 + 2S 222A + 2D + 2A + 2D+ 2AA + 2AD + 2DA + 2DD + 2S

  48. Estimating power for QTL models • Using Mx to calculate power • i. Calculate expected covariance matrices under the full model • ii. Fit model to data with value of interest fixed to null value • i.True model ii. Submodel • Q 0 • S S • N N • -2LL 0.000 =NCP

  49. Model misspecification • Using the domqtl.mx script • i.True ii. Full iii. Null • QA QA 0 • QD 0 0 • S S S • N N N • -2LL 0.000 T1 T2 • Test: dominance only T1 • additive & dominance T2 • additive onlyT2-T1

  50. Results • Using the domqtl.mx script • i.True ii. Full iii. Null • QA 0.1 0.217 0 • QD 0.10 0 • S 0.4 0.367 0.475 • N 0.4 0.417 0.525 • -2LL 0.000 1.269 12.549 • Test: dominance only (1df) 1.269 • additive & dominance (2df) 12.549 • additive only (1df)12.549 - 1.269 = 11.28

More Related