80 likes | 106 Views
Introduction to Music Information Retrieval (MIR). J.-S. Roger Jang ( 張智星 ) MIR Lab , CSIE Dept., National Taiwan Univ. http://mirlab.org/jang. How to Search for a Song?. Content-based search Melody Mood Genre Instrument Chords Cover songs 青山ミチ 風吹く丘で ( 亜麻色の髪の乙女 ) 島谷ひとみ / 亜麻色の髪の乙女.
E N D
Introduction to Music Information Retrieval (MIR) J.-S. Roger Jang (張智星) MIR Lab, CSIE Dept., National Taiwan Univ. http://mirlab.org/jang
How to Search for a Song? • Content-based search • Melody • Mood • Genre • Instrument • Chords • Cover songs • 青山ミチ 風吹く丘で(亜麻色の髪の乙女) • 島谷ひとみ / 亜麻色の髪の乙女 翻唱歌 口水歌
Types of Media for Search in MIR Quiz! • Metadata-based texts Easier • Song title, artist, tags, composer, … • Query inputs: text or speech • Content-based info Harder • Melody, lyrics, mood, genre, chord, instruments, … • Query inputs: • Symbolic: notes, chord, text, … • Acoustic: singing, humming, whistling, tapping, speech, recording of exact example, beatboxing… Content-based music information retrieval
Types of Acoustic Inputs for MIR Quiz! • Singing/humming • Query by humming (usually “ta” or “da”) • Query by singing • Whistling • Query by whistling • Normal whistle • Wolf whistle • Hand whistle • Fingerless whistle • Leaf whistle • Tapping • Query by tapping (at the onsets of notes) • Speech • Query by speech (for lyrics or meta-data) • Exact but noisy example • Query by example (noisy version of original clips) • Beatboxing Quiz!
Types of Contents for Comparison • Melody • Query by humming • Query by singing • Query by whistling • Note onsets • Query by tapping (at the onsets of notes) • Metadata • Query by speech • Audio contents • Query by examples (noisy versions of original clips) • Drum patterns • Query by beatboxing Quiz!
Demos • MIR Lab: R&D Foci and Demos
Ultimate Challenges in MIR • Ultimate challenges in MIR • Singing voice separation • Audio melody extraction • Cover song identification • Automatic music transcription • MP3 to MIDI conversion • Approaches • Deep neural networkswith domain-knowledge embedding
Thank you for listening! Questions or comments?