200 likes | 220 Views
Explore the history and chemistry behind the creation of nylon, from the announcement of a brand-new chemical textile fiber to its impact during WWII and beyond. Learn about the structures of nylon, polyurethanes, branching, networks, Bakelite, and crosslinking.
E N D
An expert is someone who has made all of the possible mistakes in a very narrow field of study – Niels Bohr
H2N - (CH2)6 - NH2 + HO - C - (CH2)4 - C - OH Hexamethylene Diamine Adipic Acid O O O O H2N - (CH2)6 - N - C - (CH2)4 - C - OH + H2O Amide Group H Nylons
Nylon 6,6 O O - N - (CH2)6 - N - C - (CH2)4 - C - n 6 6 H H “I am making the announcement of a brand new chemical textile fiber ---derivable from coal, air and water -- and characterized by extreme toughness and strength --” Charles Stine V.P. for research, Du Pont, 1938
Nylon “I am making the announcement of a brand new chemical textile fiber ---derivable from coal, air and water -- and characterized by extreme toughness and strength --” Charles Stine V.P. for research, Du Pont, 1938
Nylon May 15 1940 - “Nylon Day” Four million pairs go on sale throughout US Supply exhausted in 4 days.
O = C = N - (CH2)6 - N = C = O + HO - (CH2)2 - OH O Hexamethylene Diisocyanate Ethylene Glycol O = C = N - (CH2)6 - N - C - O - (CH2)2 - OH Urethane Linkage H Polyurethanes Reaction does not involve splitting out of a small molecule usw.
Branched - short branches Linear & branched polymers ex: polyethylene Linear
CH2 - CH2 ~~~CH2 - CH CH2 H .CH2 Formation of short chain branches in polyethylene CH2 - CH2 ~~~CH2 - CH CH2 . CH2H CH2 = CH2 C4H9 - ~~~CH2 - CH - CH2 - CH2. C4H9 - ~~~CH2 - CH - CH2 - CH2- CH2 - CH2. CH2 = CH2 Linear & branched polymers ex: polyethylene
Low density polyethylene (LDPE) (short branches)
Other types of branching short long star Branching suppresses or prevents chain movement & "crystallization" in polymers
Branching Another way to make chains branch * * Use multifunctional (f>2) monomers * OH + CH O 2 OH OH OH CH CH CH 2 2 2 OH CH CH CH 2 2 2 OH OH OH CH 2 OH
Network formation Further reaction under heat & pressure builds up densely cross-linked network. This is Bakelite, a thermosettingpolymer. Once reaction is complete, material cannot be reheated and/or reformed Bakelite
Bakelite - Material of a Thousand Uses Bakelite telephone Clear Bakelite items Phenolic resin/celluloidclock Bakelite radio Bakelite microphone Bakelite camera
Crosslinking Take linear polymer chains & link using covalent bonds
- CH2 CH2 - CH2 CH2 - CH2 CH2 - - - - - - - C = C C = C C = C - - - - - - CH3 H CH3 H CH3 H Crosslinking Ex: rxn of natural rubber or poly(isoprene) with sulfur - interconnects the chains by reacting with the double bonds (vulcanization)
Assignment: Review today's classnotes a. nylons b. polyurethanes c. branching d. networks e. Bakelite f. crosslinking g. vulcanization Read: chapter 14