400 likes | 503 Views
Explore the fascinating world of electromagnetic radiation, photon energies, and quantum phenomena related to light. Learn about wavelengths, electromagnetic waves, and the quantization of energy in this comprehensive guide.
E N D
wavelength Visible light Amplitude wavelength Node Ultraviolet radiation Electromagnetic Radiation
Short wavelength --> high frequency high energy Long wavelength --> small frequency low energy
Rank the following in order of increasing frequency: microwaves radiowaves X-rays blue light red light UV light IR light
Waves have a frequency • Use the Greek letter “nu”, , for frequency, and units are “cycles per sec” • All radiation: • = c • c = velocity of light = 3.00 x 108 m/sec • Long wavelength --> small frequency • Short wavelength --> high frequency
What is the wavelength of WONY? What is the wavelength of cell phone radiation? Frequency = 850 MHz What is the wavelength of a microwave oven? Frequency = 2.45 GHz
Quantization of Energy Light acts as if it consists of particles called PHOTONS,with discrete energy. Energy of radiation is proportional to frequency E = h • h = Planck’s constant = 6.6262 x 10-34 J•s
E = h • Relationships:
Rank the following in order of increasing photon energy: microwaves radiowaves X-rays blue light red light UV light IR light
E = h • What is the energy of a WONY photon?
Energy of Radiation What is the energy of 1 mole of UV light with wavelength = 230 nm?
Energy of Radiation What is the energy of 1 mole of IR light with wavelength = 1200 nm?
Where does light come from? • Excited solids emit a continuous spectrum of light • Excited gas-phase atoms emit only specific wavelengths of light (“lines”)
The Bohr Model of Hydrogen Atom • Light absorbed or emitted is from electrons moving between energy levels • Only certain energies are observed • Therefore, only certain energy levels exist • This is the Quanitization of energy levels
Line Emission Spectra of Excited Atoms • Excited atoms emit light of only certain wavelengths • The wavelengths of emitted light depend on the element.
Line Emission Spectra of Excited H Atoms High E Short High Low E Long Low
Origin of Line Spectra Balmer series
For H, the energy levels correspond to: Constant = 2.18 x 10-18 J
Each line corresponds to a transition: Example: n=3 n = 2
Name: ____________ • _________ • _________ • _________ • _________
Quiz Q1. Emission line with longest wavelength Q2. Absorption line with highest frequency Q3. Emission line with lowest frequency Q4. Transition that leads to forming H+
Matter Waves • All matter acts as particles and as waves. • Macroscopic objects have tiny waves- not observed. • For electrons in atoms, wave properties are important. • deBroglie Equation:
Matter waves Macroscopic object: 200 g rock travelling at 20 m/s has a wavelength: Electron inside an atom, moving at 40% of the speed of light:
Heisenberg Uncertainty Principle • Can’t know both the exact location and energy of a particle • So, for electrons, we DO know the energy well, so we don’t know the location well
Schrodinger’s Model of H • Electrons act as standing waves • Certain wave functions are “allowed” • Wave behavior is described by wave functions: • 2 describes the probability of finding the electron in a certain spot • Also described as electron density
Example Wavefunction • Equation slightly simplified:
It’s all about orbitals • Each wavefunction describes a shape the electron can take, called an ORBITAL • Allowed orbitals are organized by shells and subshells • Shells define size and energy (n = 1, 2, 3, …) • Subshells define shape (s, p, d, f, …) • Number of orbitals is different for each subshell: s = 1 p = 3 d = 5 f = 7