370 likes | 588 Views
시스템별 스펙정리. IEEE 802.11a IEEE 802.11n. IEEE 802.11a (1). Rate-dependent parameters. Table 1 Modulation-dependent normalization factor K MOD. IEEE 802.11a (2). Rate-dependent parameters (Cont’). Fig. 1 BPSK, QPSK and 16QAM constellation bit encoding.
E N D
IEEE 802.11a • IEEE 802.11n
IEEE 802.11a (1) • Rate-dependent parameters Table 1 Modulation-dependent normalization factor KMOD
IEEE 802.11a (2) • Rate-dependent parameters (Cont’) Fig. 1 BPSK, QPSK and 16QAM constellationbit encoding Table 2 BPSK, QPSK and 16QAM encoding table
IEEE 802.11a (3) Fig. 2 64QAM constellationbit encoding
IEEE 802.11a (4) • Convoultional encoder • Rate R=1/2 code with generator polynomials • g0=1338 and g1=1718 • Higher rates are derived from it by employing “puncturing” • R=2/3 or 3/4 • Decoding by Viterbi algorithm is recommended
IEEE 802.11a (5) • Convoultional encoder (Cont’)
IEEE 802.11n (1) • Rate dependent parameters for high throughput modulation and coding schemes Table 1 Symbols used in rate dependent parameters tables Table 2 Rate dependent parameters for mandatory 20MHz
IEEE 802.11n (2) • Convoultional encoder • A single FEC encoder is used when the PHY rate is less than or equal 300Mbps or when LDPCC ECC is used. • Rate = ½ code • Higher rates are derived from it by employing “puncturing” • R=2/3, 3/4 or 5/6
MB-OFDM UWB (1) • Data rate-dependent modulation parameter Table 1 Modulation-dependent normalization factor KMOD Table 2 QPSK encoding table Fig. 1 QPSK constellationbit encoding
st st 1 100 S / P 1 16 - point bits 1 : 2 Mapper 50 tone Interleaver IFFT separation nd nd 2 100 S / P 2 16 - point bits 1 : 2 Mapper MB-OFDM UWB (2) • Data rate-dependent modulation parameter (Cont’) Fig. 2 Block diagram of DCM Fig. 3 16 point constellations
Output Data A D D D D D D Output Data B Output Data C MB-OFDM UWB (3) • Convolutional encoder • Rate R=1/3 code with generator polynomials • g0=1338, g1=1658, and g2=1718 • Additional coding rates are derived from the rate R = 1/3 convolutional code by employing “puncturing” • R=1/3, 11/32, ½, 5/8, or 3/4 • Decoding by Viterbi algorithm is recommended Fig. 4 Convolutional encoder: rate R=1/3, constraint length K=7
MB-OFDM UWB (4) • Convolutional encoder (Cont’) Fig. 5 An example of the bit-stealing and bit-insertion procedure (R=11/32)
MCI & SI TDC EWS 2 Ch Multi Ch. D L S T D C MOT IP Tunneling TDC MPEG4 A/V MPEG4 Data Broadcasting Web Site Interactive Service TPEG, DGPS etc JPEG Slide Show Audio PAD NPAD MPEG4 LIVE TV Block Code FIDC Audio Service Data Service K-DMB Service FIC MSC DAB (Eureka-147) T-DMB (1) • 지상파 DMB 개념도
T-DMB (2) • DAB (Eureka-147) 구조도
T-DMB (3) • Convolutional Coding (Mother Code) • Constraint: 7 • Memory: 6 • Code rate: ¼ • Generating polynomial: (133, 171, 145, 133)o • all-zero initial state of the shift register • Output codeword P/S To puncturing procedure
T-DMB (4) • Puncturing Block • Mother code의 일부 bit가 결정된 순서에 따라 전송되지 않음
T-DMB (5) • Puncturing Block (cont’d) • vPI,i = 0 : the corresponding bit shall not be transmitted • vPI,i = 1 : the corresponding bit shall be transmitted
T-DMB (6) • Phase Reference Symbol • Reference for the differential modulation for the next OFDM symbol Mode II
T-DMB (7) • QPSK Symbol Mapper
T-DMB (8) • Differential Modulation • Applied to the QPSK symbols on the same carriers between two consecutive OFDM symbols • 8 possible phase states
Wibro (1) • 2.3GHz 휴대인터넷 국내 기술 기준 WiBro IEEE 802.16 + 60km/h로 이동시, 셀 경계에서 최소 하향 512kbps, 상향128kbps 보장 채널대역폭 ≥ 9 MHz 사업자 장비간 로밍 가능 주파수 재사용계수 = 1 이중화 방식 = TDD (송수신 time slot간 동기 일치)
Wibro (2) • Wibro 송수신 블록도
Wibro (3) • Convolution Turbo Code (CTC) • Dual binary circular recursive systematic convolutional (CRSC)
Wibro (4) • CTC interleaver • First permutation • Second permutation
Wibro (5) • Mapping 64QAM QPSK 16QAM
CDMA (IS-95) • WCDMA
CDMA (1) • System parameter • Duplex mode : FDD and TDD • Ddata modulation : QPSK(downlink) BPSK(uplink) • Channel coding : convoultional and turbo codes • Convolutional coding rate = 1/3 or ½ with constraints length 9 • Turbo coding rate = 1/3 • Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding
CDMA (2) • Convolutional Encoder • Forward Link & Rate set 2 Reverse Link ; • R = 1/2, K = 9, g0 = 753(8)=111101011(2) g1 = 561(8)=101110001(2) ‘1’ : Connection ‘0’ : Disconnection ex) Forward link g0 c0 Data bits input Code Symbols Output g1 c1
I Q 위상 0 0 /4 1 0 3/4 -3/4 1 1 -/4 0 1 CDMA (2) • CMDA 순방향채널의 I, Q 데이터와 위상
WCDMA (1) • System parameter • Duplex mode : FDD and TDD • Ddata modulation : QPSK(downlink) BPSK(uplink) • Channel coding : convoultional and turbo codes • Convolutional coding rate = 1/3 or ½ with constraints length 9 • Turbo coding rate = 1/3 • Turbo coding scheme is a parallel concatenated convoultional code (PCCC) with 8 state constituent encoders Fig. 1 Overall eight-state PCCC turbo coding
WCDMA (2) • Modulation • The complex-valued chip sequence generated by the spreading process is QPSK modulated • The pulse shaping is root-raised cosine with roll-off factor 0.22 and is the same for the mobile and base stations Fig. 2 Modulation principle