1 / 77

Chapter 8: Network Security

Chapter goals: understand principles of network security: cryptography and its many uses beyond “confidentiality” authentication message integrity security in practice: firewalls and intrusion detection systems security in application, transport, network, link layers.

Download Presentation

Chapter 8: Network Security

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter goals: understand principles of network security: cryptography and its many uses beyond “confidentiality” authentication message integrity security in practice: firewalls and intrusion detection systems security in application, transport, network, link layers Chapter 8: Network Security 8: Network Security

  2. Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security

  3. Friends and enemies: Alice, Bob, Trudy • well-known in network security world • Bob, Alice (lovers!) want to communicate “securely” • Trudy (intruder) may intercept, delete, add messages Alice Bob data, control messages channel secure sender secure receiver data data Trudy 8: Network Security

  4. There are bad guys (and girls) out there! Q: What can a “bad guy” do? A: a lot! • eavesdrop: intercept messages • actively insert messages into connection • impersonation: can fake (spoof) source address in packet (or any field in packet) • hijacking: “take over” ongoing connection by removing sender or receiver, inserting himself in place • denial of service: prevent service from being used by others (e.g., by overloading resources) 8: Network Security

  5. What is network security? Confidentiality: only sender, intended receiver should “understand” message contents • sender encrypts message • receiver decrypts message Authentication: sender, receiver want to confirm identity of each other Message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection Access and availability: services must be accessible and available to users 8: Network Security

  6. Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security

  7. K K A B The language of cryptography Alice’s encryption key Bob’s decryption key symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private) encryption algorithm decryption algorithm ciphertext plaintext plaintext 8: Network Security

  8. Symmetric key cryptography substitution cipher: substituting one thing for another • monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc Key: the mapping from the set of 26 letters to the set of 26 letters • Q: How hard to break this simple cipher?: • brute force (how hard?) or other? 8: Network Security

  9. Polyalphabetic encryption • n monoalphabetic cyphers, M1,M2,…,Mn • Cycling pattern: • e.g., n=5, M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; • For each new plaintext symbol, use subsequent monoalphabetic pattern in cyclic pattern • dog: d from M1, o from M3, g from M4 • Key: the n ciphers and the cyclic pattern

  10. K K A-B A-B K (m) m = K ( ) A-B A-B Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K • e.g., key is knowing substitution pattern in mono alphabetic substitution cipher • Q: how do Bob and Alice agree on key value? encryption algorithm decryption algorithm ciphertext plaintext plaintext message, m K (m) A-B A-B 8: Network Security

  11. Two types of symmetric ciphers • Stream ciphers • encrypt one bit at time • Block ciphers • Break plaintext message in equal-size blocks • Encrypt each block as a unit

  12. Stream Ciphers pseudo random • Combine each bit of keystream with bit of plaintext to get bit of ciphertext • m(i) = ith bit of message • ks(i) = ith bit of keystream • c(i) = ith bit of ciphertext • c(i) = ks(i)  m(i) ( = exclusive or) • m(i) = ks(i)  c(i) keystream generator key keystream

  13. RC4 Stream Cipher • RC4 is a popular stream cipher • Extensively analyzed and considered good • Key can be from 1 to 256 bytes • Used in WEP for 802.11 • Can be used in SSL

  14. Block ciphers • How many possible mappings are there for k=3? • How many 3-bit inputs? • How many permutations of the 3-bit inputs? • Answer: 40,320 ; not very many! • In general, 2k! mappings; huge for k=64 • Problem: • Table approach requires table with 264 entries, each entry with 64 bits • Table too big: instead use function that simulates a randomly permuted table

  15. From Kaufman et al 64-bit input 8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits S5 S6 S7 S8 S2 S4 S3 S1 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 64-bit intermediate Loop for n rounds 64-bit output Prototype function 8-bit to 8-bit mapping

  16. Why rounds in prototpe? • If only a single round, then one bit of input affects at most 8 bits of output. • In 2nd round, the 8 affected bits get scattered and inputted into multiple substitution boxes. • How many rounds? • How many times do you need to shuffle cards • Becomes less efficient as n increases

  17. DES operation Symmetric key crypto: DES initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation 8: Network Security

  18. Symmetric key crypto: DES DES: Data Encryption Standard • US encryption standard [NIST 1993] • 56-bit symmetric key, 64-bit plaintext input • How secure is DES? • DES Challenge: 56-bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months • no known “backdoor” decryption approach • making DES more secure: • use three keys sequentially (3-DES) on each datum • use cipher-block chaining 8: Network Security

  19. AES: Advanced Encryption Standard • new (Nov. 2001) symmetric-key NIST standard, replacing DES • processes data in 128 bit blocks • 128, 192, or 256 bit keys • brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES 8: Network Security

  20. Public key cryptography symmetric key crypto • requires sender, receiver know shared secret key • Q: how to agree on key in first place (particularly if never “met”)? public key cryptography • radically different approach [Diffie-Hellman76, RSA78] • sender, receiver do not share secret key • public encryption key known to all • private decryption key known only to receiver 8: Network Security

  21. + K (m) B - + m = K (K (m)) B B Public key cryptography + Bob’s public key K B - Bob’s private key K B encryption algorithm decryption algorithm plaintext message plaintext message, m ciphertext 8: Network Security

  22. K (K (m)) = m B B - + 2 1 Public key encryption algorithms Requirements: need K ( ) and K ( ) such that . . + - B B + given public key K , it should be impossible to compute private key K B - B RSA: Rivest, Shamir, Adleman algorithm 8: Network Security

  23. + - K K B B RSA: Choosing keys 1. Choose two large prime numbers p, q. (e.g., 1024 bits each) 2. Compute n = pq, z = (p-1)(q-1) 3. Choose e (with e<n) that has no common factors with z. (e, z are “relatively prime”). 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1 ). 5.Public key is (n,e).Private key is (n,d). 8: Network Security

  24. 1. To encrypt bit pattern, m, compute d e m = c mod n c = m mod n e (i.e., remainder when m is divided by n) d e m = (m mod n) mod n RSA: Encryption, decryption 0. Given (n,e) and (n,d) as computed above 2. To decrypt received bit pattern, c, compute d (i.e., remainder when c is divided by n) Magic happens! c 8: Network Security

  25. d e m = c mod n c = m mod n d c RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z. e m m letter encrypt: l 17 1524832 12 c letter decrypt: 17 12 l 481968572106750915091411825223071697 8: Network Security

  26. Prerequisite: modular arithmetic • x mod n = remainder of x when divide by n • Facts: [(a mod n) + (b mod n)] mod n = (a+b) mod n [(a mod n) - (b mod n)] mod n = (a-b) mod n [(a mod n) * (b mod n)] mod n = (a*b) mod n • Thus (a mod n)d mod n = ad mod n • Example: x=14, n=10, d=2:(x mod n)d mod n = 42 mod 10 = 6xd = 142 = 196 xd mod 10 = 6 8: Network Security

  27. e d ed (m mod n) mod n = m mod n ed mod (p-1)(q-1) 1 = m = m mod n = m mod n y y mod (p-1)(q-1) d e x mod n = x mod n m = (m mod n) mod n RSA: Why is that Useful number theory result: If p,q prime and n = pq, then: (using number theory result above) (since we choseed to be divisible by (p-1)(q-1) with remainder 1 ) 8: Network Security

  28. K (K (m)) = m - B B + K (K (m)) - + = B B RSA: another important property The following property will be very useful later: use private key first, followed by public key use public key first, followed by private key Result is the same! 8: Network Security

  29. K (K (m)) = m - B B + K (K (m)) - + = B B Why is RSA Secure? Why ? Follows directly from modular arithmetic: (me mod n)d mod n = med mod n = mde mod n = (md mod n)e mod n • Suppose you know Bob’s public key (n,e). How hard is it to determine d? • Essentially need to find factors of n without knowing the two factors p and q. • Fact: factoring a big number is hard.

  30. Still Need Secret Session keys • Exponentiation is computationally intensive • DES is at least 100 times faster than RSA Session key, KS • Bob and Alice use RSA to exchange a symmetric key KS • Once both have KS, they use symmetric key cryptography 8: Network Security

  31. Chapter 8 roadmap 8.1What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing wireless LANs 8.8 Operational security: firewalls and IDS 8: Network Security

  32. Bob receives msg from Alice, wants to ensure: message originally came from Alice message not changed since sent by Alice Cryptographic Hash: takes input m, produces fixed length value, H(m) e.g., as in Internet checksum computationally infeasible to find two different messages, x, y such that H(x) = H(y) equivalently: given m = H(x), (x unknown), can not determine x. note: Internet checksum fails this requirement! Message Integrity 8: Network Security

  33. Internet checksum: poor crypto hash function Internet checksum has some properties of hash function: • produces fixed length digest (16-bit sum) of message • is many-to-one But given message with given hash value, it is easy to find another message with same hash value: ASCII format message ASCII format message I O U 9 0 0 . 1 9 B O B 49 4F 55 39 30 30 2E 31 39 42 4F 42 I O U 1 0 0 . 9 9 B O B 49 4F 55 31 30 30 2E 39 39 42 4F 42 B2 C1 D2 AC B2 C1 D2 AC different messages but identical checksums! 8: Network Security

  34. Computationally expensive to public-key-encrypt long messages Goal: fixed-length, easy- to-compute digital “fingerprint” apply hash function H to m, get fixed size message digest, H(m). Hash function properties: many-to-1 But given message digest x = H(m), it’s infeasible to find m’ that H(m’) = H(m) Data integrity: cannot replace m with m’ Message Digests large message m H: Hash Function H(m) Ch8

  35. H(.) public Internet m m m append H(.) H(m+s) H(m+s) H(m+s) H(m+s) compare Message Authentication Code (shared secret) s (message) s (shared secret) 8: Network Security

  36. HMAC • Popular MAC standard • Addresses some subtle security flaws • Concatenates secret to front of message. • Hashes concatenated message • Concatenates the secret to front of digest • Hashes the combination again.

  37. MD5 hash function widely used (RFC 1321) computes 128-bit MAC in 4-step process. arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x recent (2005) attacks on MD5 SHA-1 is also used US standard [NIST, FIPS PUB 180-1] 160-bit MAC Partial attack MACs in practice 8: Network Security

  38. cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator. verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document Digital Signatures 8: Network Security

  39. simple digital signature for message m: Bob “signs” m by encrypting with his private key KB, creating “signed” message, KB(m) - - K K B B Digital Signatures - - Bob’s private key Bob’s message, m (m) Dear Alice Oh, how I have missed you. I think of you all the time! …(blah blah blah) Bob Bob’s message, m, signed (encrypted) with his private key public key encryption algorithm 8: Network Security

  40. suppose Alice receives msg m, digital signature KB(m) Alice verifies m signed by Bob by applying Bob’s public key KB to KB(m) then checks KB(KB(m) ) = m. if KB(KB(m) ) = m, whoever signed m must have used Bob’s private key. Alice thus verifies that: Bob signed m. No one else signed m. Bob signed m and not m’. non-repudiation: Alice can take m, and signature KB(m) to court and prove that Bob signed m. Digital Signatures (more) - - - + + - + - 8: Network Security

  41. Digital signature = signed MAC H: hash function H: hash function large message m large message m + - digital signature (decrypt) digital signature (encrypt) K K B B encrypted msg digest encrypted msg digest + - - KB(H(m)) KB(H(m)) H(m) H(m) Bob sends digitally signed message: Alice verifies signature and integrity of digitally signed message: H(m) Bob’s private key Bob’s public key equal ? 8: Network Security

  42. Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” “I am Alice” Failure scenario?? 8: Network Security

  43. Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap1.0:Alice says “I am Alice” in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice “I am Alice” 8: Network Security

  44. Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Failure scenario?? 8: Network Security

  45. Alice’s IP address “I am Alice” Authentication: another try Protocol ap2.0:Alice says “I am Alice” in an IP packet containing her source IP address Trudy can create a packet “spoofing” Alice’s address 8: Network Security

  46. Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her (encrypted) secret password to “prove” it. Failure scenario?? 8: Network Security

  47. Alice’s password Alice’s IP addr “I’m Alice” Alice’s IP addr OK Authentication: another try Protocol ap3.0:Alice says “I am Alice” and sends her (encrypted) secret password to “prove” it. Alice’s password Alice’s IP addr “I’m Alice” playback attack: Trudy records Alice’s packet and later plays it back to Bob 8: Network Security

  48. K (R) A-B Authentication: yet another try Goal:avoid playback attack Nonce:number (R) used only once –in-a-lifetime ap4.0:to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key “I am Alice” R Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice! Failures, drawbacks? 8: Network Security

  49. Two-way Authentication 1 Request from Alice 2 & 4 Challege (a nonce) from Bob & Alice, resp 3 & 5 Response from Alice & Bob, resp (authenticated afterwards) Ch8

  50. What if we do it in three steps? • Alice request and challenges Bob first • Bob responses (and get authenticated) and challenges Alice next • Alice responses (is she authenticated?) Ch8

More Related