530 likes | 700 Views
Bauphsik. Vorlesung 2 Std. E.K. Tschegg, Labor für Materialwissenschaften E206-4, TU Wien SS. Unterlagen Bauphysik www.hochbau.tuwien.ac.at Prof. Elmar Tschegg Elmar.Tschegg@tuwien.ac.at. Bauphysi k: Wärme, Feuchte, Schall, Licht, Niederschlag und Wind.
E N D
Bauphsik Vorlesung 2 Std. E.K. Tschegg, Labor für Materialwissenschaften E206-4, TU Wien SS Unterlagen Bauphysik www.hochbau.tuwien.ac.at Prof. Elmar Tschegg Elmar.Tschegg@tuwien.ac.at
Bauphysik:Wärme, Feuchte, Schall, Licht, Niederschlag und Wind. Physik, Chemie undMaterialwissenschaften Behaglichkeit/das Wohlbefinden der Bewohner: biologischen Forschungsbereichen Medizin und Physiologie.
Bauphysik soll: die physikalischenGrundregeln in seinemArbeitsbereich richtig anzuwenden. Sie verabreicht keine Konstruktionsrezepte, sondern versucht die physikalischenGesetzmäßigkeitenfür Vorgänge,welche in oder ums Gebäude ablaufen,aufzuzeigen und zu erklären, um sie anschließendbei der Konstruktion und/oder Sanierung schon in der Planungsphase richtig anwenden zukönnen
1. Wärmeleitung Bei der Wärmeleitung, die hauptsächlich in festen Körpern und stehenden Flüssigkeiten stattfindet
2. Wärmeströmung Bei der KonvektionoderWarmeströmung, die nur in Gasenoder Flüssigkeitenstattfindet, wird die Wärme durch Bewegungsvorgänge (Strömung oderOrtsänderung) transportiert.
3. Wärmestrahlung Bei der Wärmestrahlung wird die thermische Energie durchelektromagnetische Strahlung ohne "materiellen" Wärmeübertrager (auch im Vakuum) übertragen, d.h. es brauchtkeine Masse als Übertrager.
«Solarhaus-Konzeption»von Sokrates • 1Sonneneinstrahlung auf die Südfassade im Sommer • 2Sonneneinstrahlung auf die Südfassade im Winter • Gedeckte TerrasseWohnraum • Wohnraum, • 5 Vorratsräume als thermischePufferzone • 6Isolierwand gegen Norden
1.3 Kurzer Abriss der Theorie der Wärmeleitung Der Energietransport, der auf Grund eines Temperaturgefälles innerhalb eines Materialsohne Massentransport auftritt, wird Wärmeleitung genannt. Der Wärmestrom `Q, d.h.die Wärmemenge, die pro Zeiteinheit durch die Querschnittsfläche A eines Körpers fließt, wächst proportional mit zunehmendem Temperaturgradienten dT/dx und zunehmender Fläche A.
Die Wärmeleitfähigkeit λwird durch Messungen an Probekörpern als charakteristischeMaterialgröße bestimmt.
Wärmestromdichte q Gesetz von Fourier den Wärme-transport durch ein Material Kontinuitätsgleichung Fourier'sche Differentialgleichung Material + Wärmequellen
Stoff Rohdichte kg/m3 Wärmeleit- zahl W/mK Spez.Wärme c Wh/m3K Temp. Leitfähigkeit a=/cm5/h kg Stahl 7850 58 1092 531 Blei 11300 35 395 886
Spezialfall: Eindimensionale, stationäre Wärmeleitung den Fall der stationären eindimensionalen Wärmeleitung in homogenen Körpern Geradengleichung
Dieser Spezialfall der Wärmeleitung lässt sich somit analog behandeln wie die Frage nach der elektrischen Stromstärke I in einem elektrischen Leiter bei angelegter Spannung U =V1-V2. In beiden Fällen erzeugt eine Ursache (Temperaturgradient rsp Spannungsunterschied) eine Wirkung (Wärmefluss bzw. elektrischer Strom), die sich aber nur gegen den Widerstand des Transportmaterials einstellen kann
Wärmedurchlasswiderstand Wärmeleitfähigkeit λ [W(Km)-1] Die Größe wird als Wärmedurchlasskoeffizient bezeichnet und ist in Analogie zur Elektrodynamik als eine Art Wärmeleitwert der betreffenden Materialschicht zu betrachten. (Dämmwert)
Messung von λ bei plattenförmigen Versuchskörper bei stationärer Wärmeströmung Stark poröses Material mit Moosgummieinbetten. Sämtliche Ritzen mit Korkmehl aus-füllen. (Konvektion ausschalten)Schutzring : Reduziert Wärmeverluste;keine Berührung; mit Heizplatte t Ein-Platten-Verfahren oder zweite Platte wird durch Heizplatte ersetzt.
1.4 Wärmeleitfähigkeit vonBaustoffen Porengehalt Die in den Poren eingeschlossene Luft hat eine geringere Wärmleitfähigkeit als das porenumschließende Material. Porengehalt Die in den Poren eingeschlossene Luft hat eine geringere Wärmleitfähigkeit als das porenum-schliessende Material. Porengehalt Die in den Poren eingeschlossene Luft hat eine geringere Wärmleitfähigkeit als das porenum-schliessende Material. Porengehalt Die in den Poren eingeschlossene Luft hat eine geringere Wärmleitfähigkeit als das porenum-schliessende Material.
Feuchtigkeit Wasser leitet Wärme ca. 25 mal besser als Luft
Wärmeleitzahl von Baustoffen, abhängig von der Rohdichte Rohdichte
Einfluss des Feuchtegehaltes des Baumaterials auf dessen Wärmeleitfähigkeit: a)Mauerwerkstoffe b)Schaumkunststoffe
Temperatur Wärmeleitzahl von Wärmedämmstoffen als Funktion der mittleren Materialtemperatur
Die Baustoffe können hinsichtlich ihrer Wärmeleitfähigkeit grob in drei Gruppen eingeteilt werden: natürliche Steine: λ = 2,3 bis 3,5 W(mK)-1Baustoffe aller Art:λ = 0,1 bis 2,3 W-(mK)-1Dämmstoffe:λ = 0,02 bis 0,1 W(mK)-1 Die Wärmeleitzahl lässt sich am einfachsten für feste Körper bestimmen. Bei Flüssigkeiten und Gasen treten aufgrund von Temperaturdifferenzen Strömungen auf. Dabei wird zusätzlich Wärme durch Bewegung von Materieteilchen verschiedenen Wärmeinhaltes transportiert. Die Anwendung von λ -Werten ist dann nur noch bedingt möglich. So werden beispielsweise λ -Werte für Luftschichten zwischen Fensterscheiben angegeben, welche die Wärmeströmung (Konvektion) mitberücksichtigen.
1.5Wärmeübergang: Wärmetransport an der Mediengrenze Baustoff – Luft 1.5.1 Grenzschicht und Wärmeübergang Am Übergang vom wärmeleitenden Festkörper zu einem gasförmigen Wärmeträger entsteht in einer sog. Grenzschicht aufgrund des thermischen Auftriebs eine Strömung. Innerhalb dieser Übergangsschicht existiert wegen der Temperaturdifferenz zwischen Festkörperoberfläche und Gas ein Temperaturgradient. Der Wärmetransport durch diese Grenzschicht erfolgt neben Wärmeleitung im Gas hauptsächlich durch Konvektion (Wärmeströmung) und Strahlung.
1.5.2 Der Wärmeübergangskoeffizient α Nicht lineares Grenzschichtproblem ist rechnerisch schwer erfassbar. Analogie zur Wärmeleitung der Wärmeübergang in erster Näherung durch einen Wärmeleitwert - den sog. Wärmeübergangskoeffizienten α dargestellt. Dieser Koeffizient gibt an, welcher Wärmestrom Q/t im stationären Zustand bei einer Temperaturdifferenz von 1 K durch 1 m2 Übergangsfläche fließt...
Flüssigkeit, L: Leitung K: Konvektion S: Strahlung
Beispiele von Geschwindigkeits- und Temperaturprofilen in der laminaren Grenzschicht der Luft entlang einer vertikalen Platte: a) freie Konvektion, b) erzwungene Konvektion, Tw > TL c) erzwungene Konvektion, Tw < TL
Der konvektive Anteil αK am Wärmeübergang • freie Konvektion, Strömung durch thermische Auftriebskräfte bei konstantem Druck (Dichteänderungen), laminar oder turbulent; • - erzwungene Konvektion, Strömung infolge Druckdifferenz (z.B. Winddruck), vorwiegend turbulent.
Die gesamte, sich aus allen drei Transportarten zusammensetzende Wärmeübertragung einer Wandoberfläche an die Luft bezeichnet man als Wärmeübergang. Der Wärmetransport durch Konvektion an Oberflächen wird hauptsächlich von folgenden Parametern beeinflusst: - Temperaturdifferenz Wandoberfläche- Luft - Windgeschwindigkeit (vW) - Art der Strömung: laminar - turbulent (Reynoldszahl Re) - Wärmestromrichtung (horizontal, vertikal auf- oder abwärts) - Oberflächenbeschaffenheiten (Rauhigkeit Ro) - Geometrie und Abmessungen des Bauteils (Ecken, Nischen etc.) - Art des Mediums (z.B. Wasser, Öl, Gas))
Der Wärmeübergangskoeffizient αKFunktion der Temperaturdifferenz für den Fall freier Konvektion und turbulenter Strömung (z.B. Wand- und Deckenoberfläche gegen Innenräume)
Abhängigkeit des Wärmeübergangskoeffizienten αK von der Windgeschwindigkeit bei turbulenter Strömung (z.B. Außenoberfläche einer Wand)
Der Strahlungsanteil α S am Wärmeübergang Der Energieaustausch durch Wärmestrahlung zwischen zwei Oberflächen wird primär durch folgende Faktoren bestimmt: - Temperatur der Oberflächen (To4 [K]) - Strahlungseigenschaften derOberflächen: Absorptions - resp. Emissions- und Reflexionsvermögen (α ε ρ ) - gegenseitige Lage der Flächen (Form- oder Winkelfaktor Fjn)
Mittlere Wärmeüberganqskoeffizienten α S α S = 4,6 W (m-2 K-1) Oberflächen gegen annähernd gleich warme Körper α S= 2,3 W(m-2 K-1) Raumseite von Außenwandecken, Oberflächen gegen kalte Körper und Fenster
Normalfall folgende Werte für den Wärmeübergangswert einsetzen • Bei inneren Oberfläche: • Wärmestrom horizontal / vertikal nach oben • Wärmestrom vertikal nach unten • Bei äußeren Oberflächen: • direkte Luftberührung (mittlere Windgeschwindigkeit 3 ms-1) • Hinterlüftung, raumseitig des Luftspaltes • Bei endberührten Bauteilen gilt 8 W (m-2 K -1) 6 W (m-2 K-1) 20 W (m-2 K-1) 15 W (m-2 K -1) 1/ K = 0
1.5.3 Wärmeübertragung in Luftschichten Beim Wärmefluss durch Luftschichten spielt die Wärmestrahlung eine dominierende Rolle. Zusätzlich wird Wärme in dünneren Schichten vorwiegend durch Wärmeleitung transportiert, bei dickeren hingegen macht sich hauptsächlich der Einfluss der Konvektion bemerkbar.
Berechnungen mit ebenen Luftschichten (sowohl Wärmeleitung, wie auch Strahlung und Konvektion sind in diesen Werten mitberücksichtigt):
1.6 Wärmedurchgang (Stationärer Fall) I = Q/t Q/t= Wärmedurchgangskoeffizient Q/t=
Mehrere Wandschichten : Ableitung analog wie oben ... Wärmedurchgangskoeffizient ... Wärmedurchgangswiderstand ... Wärmeübergangswiderstand ... Wärmedurchlässigkeit der Wand ... Wärmedurchlässigkeitswiderstand der Wand (DÄMMWERT) .. .Wärmedurchgangskoeffizient .. .Wärmedurchgangswiderstand .. .Wärmeübergangswiderstand ...Wärmedurchlässigkeit der Wand .. .Wärmedurchlässigkeitswiderstand der Wand (DÄMMWERT)
Wärmeübergangswiderstand außen 1/A Wärmeübergangswiderstand innen 1/I WÄRMEDURCHGANGSWIDERSTAND 1/k
Der WÄRMEDURCHGANGSKOEFFIZIENT k gibt den Wärmestrom an, der im stationären Zustand durch 1 m2 eines Bauteiles (Regelquerschnitt!) senkrecht zur Oberfläche fließt, wenn in den beidseitig angrenzenden Räumen ein Temperaturunterschied von 1 K herrscht.
Die (Wärme-) Isolierfähigkeit einer Konstruktion ist umso besser, je kleiner der Wärme- Durchgangskoeffizient k: schlecht isolierte Wände k > 1.0 massig isolierte Wände k = 0.6 - 1.0 gut isolierte Wände k = 0.4 - 0.6 sehr gut isolierte Wände k < 0.4
Ermittlung des Temperaturverlaufes im Bauelement Bei bekanntem K-Wert lässt sich nun der Wärmestrom q durch ein Bauelement bei gegebener stationärer Temperaturdifferenz = 1 – 2 berechnen: Q/(tA)= In einer Schicht j mit der Dicke dj und der Wärmeleitzahl j tritt ein Temperaturgefälle Tj/xj auf:
Wärmewiderstand-Temperatur-Darstellung Natürlicher Maßstab
Einschichtige Wand (beidseitig verputzt) Wand mit Außenisolation Zweischalenmauerwerk Holz-Ständerbau Leichtwand Holz-Blockbau