190 likes | 350 Views
MASSACHUSETTS INSTITUTE OF TECHNOLOGY. CeSIMEE. CENTER FOR SCIENTIFIC INVESTIGATION OF. MATERIALS IN EXTREME ENVIRONMENTS. EXTREME ENVIRONMENTS: temperatures ion concentrations humidities stresses transport rates radiation fields. APPLICATIONS: energy storage & conversion
E N D
MASSACHUSETTS INSTITUTE OF TECHNOLOGY CeSIMEE CENTER FOR SCIENTIFIC INVESTIGATION OF MATERIALS IN EXTREME ENVIRONMENTS • EXTREME ENVIRONMENTS: • temperatures • ion concentrations • humidities • stresses • transport rates • radiation fields • APPLICATIONS: • energy storage & conversion • environmental sensors • nuclear fuel & infrastructure • corrosion prevention • space & deep sea science • cancer microenvironments Krystyn J. Van Vliet Departments of Materials Science & Engineering and Biological Engineering MIT, Cambridge, MA 02139 AFOSR PECASE: Reactive Nanocomposites for Tunable Energy Dissipation AFOSR Workshop on Materials & Processes Far From Equilibrium Nov. 3-4, 2010
The MIT Center for Scientific Investigation of Materials in Extreme Environments aims to: • Connect researchers working in this diverse application space • Identify experimental & computational synergies and needs • Create new research & funding opportunities for students and faculty • Communicate CeSIMEE strengths to MIT, industry, and government CeSIMEE Fall Lunch Forums: October 25 * November 15 * December 6 http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering Massachusetts Institute of Technology CeSIMEE CENTER FOR SCIENTIFIC INVESTIGATION OF MATERIALS IN EXTREME ENVIRONMENTS • EXTREME ENVIRONMENTS: • temperatures • ion concentrations • humidities • stresses • transport rates • radiation fields • APPLICATIONS: • energy storage & conversion • environmental sensors • nuclear fuel & infrastructure • corrosion prevention • space & deep sea science • cancer microenvironments
Connecting interdisciplinary materials research • Plasma Surface Interaction Science Center • Fusion energy & plasma thrusters • Whyte et al. (NSE) • DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) • Battery and solid-oxide-fuel cell materials at high flux and temperature • Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE) • BP-MIT-Manchester Corrosion Center • Metal oxidation & corrosion at high acidity and temperature • Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz(NSE) • MIT Concrete Sustainability Hub • Predictive design of cement under extreme physical & mechanical environments • Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al. • DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors • Design of materials for nuclear reactor fuel and fuel cladding • Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al. • Institute for Soldier Nanotechnology • Materials for blast & ballistic protection, tissue surrogacy • Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE) • Biological/Biomedical Centers-To-Be… • Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging • Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm(BE); others? 10.25 11.15 12.06 http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering
Connecting interdisciplinary materials research • Plasma Surface Interaction Science Center • Fusion energy & plasma thrusters • Whyte et al. (NSE) • DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) • Battery and solid-oxide-fuel cell materials at high flux and temperature • Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE) • BP-MIT-Manchester Corrosion Center • Metal oxidation & corrosion at high acidity and temperature • Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz (NSE) • MIT Concrete Sustainability Hub • Predictive design of cement under extreme physical & mechanical environments • Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al. • DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors • Design of materials for nuclear reactor fuel and fuel cladding • Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al. • Institute for Soldier Nanotechnology • Materials for blast & ballistic protection, tissue surrogacy • Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE) • Biological/Biomedical Centers-To-Be… • Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging • Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm (BE); others? http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering
COFFEI: Chemomechanics of Far-From-Equilibrium Interfaces W. Craig Carter, Yet-Ming Chiang, Yang Shao-Horn, Krystyn Van Vliet, Bilge Yildiz, Sidney Yip, Harry Tuller (PI) Project Goal: To develop understanding of the electro-chemo-mechanical coupling of defect concentrations, ionic transport, and stored elastic energy in far-from-equilibrium conditions typical of energy device applications
Thermomechanical vs. Chemomechanical Properties We wouldn’t think of putting materials in service without considering their thermal-mechanical properties DLi • Thermal expansion and mismatch: • Thermal Shock: think-aboutit.com schenectady.k12.ny.us frca.co.uk DO O2 H2 http://en.wikipedia.org/wiki/Liberty_Bell
Ion transport in battery & fuel cell nano-oxides: “Electrochemical shock” 50 Cycles Fresh Cell
New Electromechanical Shock Maps Critical combinations of particle size and rate Now validated via our nanoparticle & nanofilm fracture toughness measurements J. Electrochem. Soc., 157 [10] A1052-A1059 (2010)
Unique experimental tools in FFE environments Thin film V Substrate L/L Load O2 (g) Vibrating substrate f → mass Nanoindentation at high temps (1000C) and controlled gas environments Scanning Tunneling Microscopy & XPS: Electrochemistry in situ
MIT Concrete Sustainability Hub: Redesign from first principles Krystyn J. Van Vliet, Roland Pellenq, Jeff Grossman, Bilge Yildiz, Sid Yip, Franz Ulm web.mit.edu/cshub
http://www.cement.org Water Content [% mass] Powers and Brownyard (1946) Partial Pressure [p/ps] Temperature, humidity, & drying Shrinkage, cracking, warping, reduced lifespan Water adsorption dynamics poorly understood, widely studied Motivation • Understanding dehydration effects in cement & concrete is: • Key to minimizing shrinkage and cracking in slabs & pavements • Key to Air Force runway durability & repair Can molecular modeling shrink this problem?
Unique FFE computational tools: atomistic modeling • How many H2O molecules occupy C-S-H atomistic model at specific humidity, temperature, or pressure? equilibrium non-equilibrium C-S-H (, V, T) H2O (, V, T)
Up to 30 vol% shrinkage as C-S-H fully dehydrated Shear strength doubles as C-S-H density decreases Cement mechanical strength scales with H2O content tmax fully dry C-S-H shear stress [GPa] fully hydrated C-S-H shear strain H2O/Si [mol/mol]
Plasma Surface Interaction Science CenterDennis Whyte et al. ITER Mission: Exothermic “Burn” Q=10 Reactor level fusion power Pfusion ~ 400 MW for 500 s Heating = 40 MW 20% duty cycle Size R~6 m +Field B~6 T = 5 Billion dollars 1000 m3 plasma 1000 m2 plasma-facing wall
No materials currently exist to withstand high dpa, high temps, and plasma erosion resistance required
Unique FFE experimental tools: MIT CLASS/DIONISOS facility has unique dynamic PSI capabilities: Real-time, non-perturbing MeV ion-beam surface analysis simultaneous with cw, high intensity plasma exposure • Real-time, depth-resolved, spatially dependent measurements of • Erosion • Film growth • Element/isotope mix • Fuel storage (H, He, Ar)
PSI Science Center, leveraging world-class US university PSI capabilities UC Berkeley / Tennessee Materials Modeling(Wirth) MIT / DIONISOS(Director: Whyte) UCSD / PISCES (Doerner) Emphasizing multidisciplinary training of young scientists & strong, multi-institutional collaborations
Connecting interdisciplinary materials research • Plasma Surface Interaction Science Center • Fusion energy & plasma thrusters • Whyte et al. (NSE) • DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) • Battery and solid-oxide-fuel cell materials at high flux and temperature • Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE) • BP-MIT-Manchester Corrosion Center • Metal oxidation & corrosion at high acidity and temperature • Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz(NSE) • MIT Concrete Sustainability Hub • Predictive design of cement under extreme physical & mechanical environments • Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al. • DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors • Design of materials for nuclear reactor fuel and fuel cladding • Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al. • Institute for Soldier Nanotechnology • Materials for blast & ballistic protection, tissue surrogacy • Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE) • Biological/Biomedical Centers-To-Be… • Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging • Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm(BE); others? http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering