140 likes | 370 Views
Differential Equations (Spring 2013 微分方程 ). Course Information. Instructor: Chia-Hung Yeh ( 葉家宏 ) Time Thur. 1:10 pm~4:00 pm Place F6019( 教室異動 ) Instructor’s E-mail yeh@mail.ee.nsysu.edu.tw. Course Information. Instructor’s website http://140.117.156.238/course.htm Phone
E N D
Course Information • Instructor: Chia-Hung Yeh (葉家宏) • Time • Thur. 1:10 pm~4:00 pm • Place • F6019(教室異動) • Instructor’s E-mail • yeh@mail.ee.nsysu.edu.tw
Course Information • Instructor’s website • http://140.117.156.238/course.htm • Phone • 07-5252000 Ext. 4112 • Office Hours • Tue. 2:00 pm~4:00 pm • Fri. 2:00 pm~4:00 pm
Course Information • Text book: • Dennis G. Zill and Michael R. Cullen (2009), Differential Equations with Boundary-value Problems 7th, Brooks/Cole. • Reference book: • James R. Brannan and William E. Boyce (2007), Differential Equations, John Wiley & Sons, Inc. • C. Henry Edwards and David E. Penny, Elementary Differential Equations withBoundary-value Problems 6th, Pearson Education.
Course Information • TA • 曾宗益 m003010092@student.nsysu.edu.tw • 黃志傑 m013010095@student.nsysu.edu.tw • 宋玉嫺 m013010170@student.nsysu.edu.tw • 葉政豪 m003010048@student.nsysu.edu.tw • Lab • 8021a Tel: 4166 • TA Hours • Mon. 7:30 pm~9:00 pm • Thur. 7:30 pm~9:00 pm
Course Objective • The purpose is to enable the students to study and solve a number of simple problems in ordinary/partial differential equations originating in engineering, medicine or physics by using tools from Calculus
What is Course about? • The principle of ordinary differential equation • The principle of second and high order ordinary differential equation • Laplace transform • Series solution of differential equations • Development of thinking and calculating abilities
Course Grading • Attendance and participation (10%) • Quiz (20%) • Assignments (20%) • Mid-term exam (20%) • Final exam (30%)
Course Syllabus • Week 1(2/21) - Course introduction: Goals and Requirements • Week 2(2/28) - 和平紀念日 • Week 3(3/07)-Introduction • Week 4(3/14) - First-order differential equations and modeling with first-order differential equations • Week 5(3/21) - Higher-order differential equations(1/2) • Week 6(3/28) - Higher-order differential equations(2/2) • Week 7(4/04)- 兒童節與民族掃墓節
Course Syllabus • Week 8(4/11) - Modeling with higher-order differential equations and series solutions of linear equations • Week 9(4/18) - The Laplace transform (1/2) • Week 10(4/25) - Mid-term exam • Week 11(5/02) - The Laplace transform (2/2) • Week 12(5/09) - System of linear first-order differential equations (1/2) • Week 13(5/16) - System of linear first-order differential equations (2/2)
Course Syllabus • Week 14(5/23) - Numerical solutions of ordinary differential equations and plane autonomous systems • Week 15(5/30) - Orthogonal functions and Fourier series (1/2) • Week 16(6/06) - Orthogonal functions and Fourier series (2/2) • Week 17(6/13) - Boundary-value problems in rectangular coordinates • Week 18(6/20) - Final exam
Suggestions • Review the concept of the calculus • Definition of derivative • Rules of differentiation • Chain rule and implicit differentiation • Derivatives of exponential and logarithmic functions • Derivatives of trigonometric functions
近四年微分方程總成績分佈圖 總平均:73.62 不及格平均:39.64 總平均:72.48 不及格平均:42.80 總平均:69.61 不及格平均:41.95 總平均:66.70 不及格平均:32.46
近四年微分方程及格比率 及格人數:67 不及格人數:11 及格人數:65 不及格人數:10 及格人數:65 不及格人數:11 及格人數:64 不及格人數:13