1 / 47

Few-body physics with ultracold fermions

Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg. The matter we deal with. T =40nK … 1µK Density n =10 9 … 10 14 cm -3 Pressures as low as 10 -17 mbar k B T ~ 5peV Extremely dilute gases , which can be strongly interacting !.

jensen
Download Presentation

Few-body physics with ultracold fermions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Few-bodyphysics with ultracold fermions Selim JochimPhysikalisches Institut Universität Heidelberg

  2. The matter we deal with • T=40nK … 1µK • Densityn=109 … 1014cm-3 • Pressures aslowas 10-17mbar • kBT ~ 5peV • Extremelydilutegases, whichcanbestronglyinteracting! Extreme matter!

  3. Importantlengthscales • interparticle separation sizeoftheatoms • de Broglie wavelength sizeoftheatoms • scatteringlengtha , onlyonelengthdeterminesinteractionstrength • → Universal properties, independentof a particularsystem! • → Wecan tune all theaboveparameters in ourexperiments!

  4. Tunability of ultracold systems Feshbach resonance: Magnetic-fielddependenceof s-wavescatteringlength Few-bodysystem: Tune thebindingenergyof a weaklyboundmolecule: Size (>> rangeofinteraction): Binding energy:

  5. Ultracold Fermi gases • At ultracold temperatures, a gas ofidenticalfermionsisnoninteracting • Ideal Fermi gas

  6. Ultracold Fermi gases • Need mixturestostudyinterestingphysics! • Simplestimplementation: spinmixtures (↑,↓)

  7. Ultracold Fermi gases • Two (distinguishable) fermions form a boson ….. • … moleculescan form a Bose condensate … → realize the BEC-BCS crossover!

  8. Ultracold Fermi gases • Two (distinguishable) fermions form a boson ….. • … moleculescan form a Bose condensate … • … tune fromstronglyboundmoleculestoweaklybound Cooper pairs From A. Cho, Science 301, 751 (2003) → realize the BEC-BCS crossover!

  9. A picturefromthe lab …

  10. What’s going on in our lab • Universal three-bodyboundstates „Efimov“ trimers T. Lompe et al., Science 330, 940 (2010) • Finite Fermi systemswithcontrolled interactions A newplaygroundwithcontrolatthesingleatomlevel! F. Serwane et al., Science 332, 336 (2011)

  11. The Efimov effect • An infinite numberof 3-body boundstatesexistswhenthescatteringlengthdiverges: (3 identicalbosons) 1/a (strengthofattraction) • At infinite scatteringlength:En=22.72En+1 • Scatteringlengthvalueswhere Efimov trimers becomeunboundan+1=22.7an

  12. Observing an EfimovSpectrum? 10nm (1st state) 227nm (2nd state) 5.2µm (3rd state) 0.12mm (4th state) 2.7mm (5th state)

  13. Whatisobserved in experiments? • three-bodyrecombination deeplyboundmolecule

  14. Enhanced recombination • With an (Efimov) trimeratthresholdrecombinationisenhanced: 1/a (strengthofattraction) deeplyboundmolecule

  15. Whathasbeendone in experiments? • Observeandanalyzecollisionalstability in ultracold gases • seminalexperimentwith ultracold Cs atoms (Innsbruck): T. Krämer et al., Nature 440, 315 (2006)

  16. The 6Li atom a12 |2> |1> Need three distinguishable fermions with(in general) different scattering lengths: (S=1/2, I=1 -> half-integer total angular momentum) 16

  17. The 6Li atom a12 |2> |1> Need three distinguishable fermions with(in general) different scattering lengths: a23 a13 |3> couple Zeeman sublevelsusing Radio-frequency B-fields: „Radio Ultracold“ 17

  18. 2- and 3-body boundstates …. Binding energiesofdimersandtrimers: • Threedifferent universal dimerswithbindingenergy • Wherearetrimerstates? 1/a (strengthofattraction)

  19. Wherearethe trimer states? Observecrossingsasinelasticcollisions T. Ottenstein et al., PRL 101, 203202 (2008) T. Lompe et al., PRL 105, 103201 (2010) Also: Penn State: J. Huckans et al., PRL 102, 165302 (2009) J. Williams et al. PRL 103, 130404 (2009) University of Tokyo: Nakajima et al., PRL 105, 023201 (2010) RG basedtheory: R. Schmidt, S. Flörchinger et al. Phys. Rev. A 79, 053633 (2009) Phys. Rev. A 79, 042705 (2009) Phys. Rev. A 79, 013603 (2009)

  20. Can we also measurebindingenergies? Measurebindingenergiesusing RF spectroscopy |1> |2> |2> RF field |1> |2> |3> Attach a thirdatomto a dimer Theorydatafrom: Braaten et al., PRA 81, 013605 (2010)

  21. RF-associationoftrimers radio frequency trimer dimer radiofrequency [MHz] T. Lompe et al., Science 330, 940 (2010)

  22. RF-associationof trimers • Withourprecision: theoreticalpredictionofthebindingenergyconfirmed: Need toinclude finite rangecorrectionsfor dimer bindingenergies • Same resultsfortwo different initialsystems T. Lompe et al., Science 330, 940 (2010) T. Lompe et al., PRL 105, 103201 (2010) More recentresults: Nakajima et al., PRL 106,143201 (2011) 22

  23. An ultracold three-component Fermi gas Fermionic trions, „Baryons“

  24. An ultracold three-component Fermi gas Startinggrant Color Superfluid

  25. What’s going on in our lab • Threecomponent Fermi gases RF-spectroscopyof Efimov trimers T. Lompe et al., Science 330, 940 (2010) • Finite Fermi systemswithcontrolled interactions A newplaygroundwithcontrolatthesingleatomlevel! F. Serwane et al., Science 332, 336 (2011)

  26. Ourmotivation • Atoms, nuclei … • Quantum dots, clusters … • Extreme repeatabilityandcontrolover all degreesoffreedom, but limited tunability • Wide tunability, but no „identical“ systems

  27. Creating a finite gas offermions Control the number of quantum states in the trap! Conventionaltrap like a soupplate! Shotglass type trap Large densityofstates … …smalldensityofstates

  28. Transfer atoms to a microtrap …

  29. Spill most of the atoms: Lower trap depth Use a magnetic field gradient to spill: ~600 atoms µ x B ~2-10 atoms “laser culling of atoms”: M. Raizenet al., Phys. Rev. A 80, 030302(R)

  30. Atoms in a microtrap Transfer a few 100 atomsinto a tightlyfocusedtrap (~1.8µm in size, 1.4kHz axial, 15kHz radial trapfrequencies) 100µm 100µm Trap potential is proportional tointensity, goodapproximation: harmonicatthecenter

  31. Single atomdetection oneatom in a MOT 1/e-lifetime: 250s Exposure time 0.5s CCD distancebetween 2 neighboringatomnumbers : ~ 6s 1-10 atomscanbedistinguishedwith high fidelity > 99%

  32. Startingconditions • Reservoir temperature ~250nK • Depthofmicrotrap: ~3µK • Expect • Occupationprobabilityofthelowestenergystate: > 0.9999 100µm 100µm L. Viverit et al. PRA 63, 033603 (2001)

  33. Preparationsequence Spill atoms in a controlledway Recapturepreparedatomsintomagneto-opticaltrap

  34. Spilling theatoms …. • Wecancontroltheatomnumberwithexceptionalprecision! • Note aspectratio 1:10: 1-D situation 1kHz~400feV

  35. A greenlaserpointertrap • Output power: • Total output ~70mW • Most ofitgreen, 532nm • About 10mW at 1064nm, • Some pump lightat 808nm. Atsuitable pump current: • Itemits a single longitudinal mode (singlefrequency) • Hasverylownoise: RIN < -110dB/Hz

  36. Wehavedecentcontroloverthemotionaldegreesoffreedom! • Whatabout interactions?

  37. The 6Li atom a12 |2> |1> (S=1/2, I=1 -> half-integer total angular momentum) 37

  38. First few-body interactions … Interaction-inducedspilling! F. Serwane et al., Science 332, 336 (2011)

  39. First few-body interactions • Whathappensifwe bring thetwoatoms in thegroundstateacrosstheFeshbachresonance • Oneatomisobserved in n=2 a>0 a~0

  40. Interactions in 1D Confinementinducedresonance 1D Trap hasaspectratio 1:10 3D M. Olshanii,PRL 81, 938 (1998). (for radialharmonicconfinement) Feshbachresonance

  41. Energyof 2 atomsin thetrap Relative kineticenergyoftwointeractingatoms (exactsolution!) T. Busch et al., Foundations of Physics 28, 549 (1998) x2-x1 (relative coordinate)

  42. 2 distinguishable vs. 2 identicalfermions 2 distinguishablefermions 2 identicalfermions Tunneling time equaltocaseoftwoidenticalfermions: thesystemis „fermionized“

  43. Tunneling dynamics

  44. Fermionization relative wavefunction groundstate 2 distinguishablefermions 2 identicalfermions Wave functionsquare, andenergyareidentical! (2-particle limitof a Tonks-Girardeau gas)

  45. Conclusion • Wedetectandcountsingleatomswithveryhighfidelity • Wepreparefew-fermionsystemswithunprecedentedcontrol • Wecontrolthe interactions in thefew-fermionsystem • A toolboxforthestudyoffew-bodysystems

  46. The future • Investigateinteractingfew-bodysystems in thegroundstate: Few-body „quantumsimulator“ • Realize multiple interactingwells Study dynamicsoffew-fermionsystems: Howmanyatoms do weneedtohave a thermal ensemble? Measurepairing in a finite system

  47. Thankyouverymuchforyourattention! Friedhelm Serwane Johanna Bohn Martin Ries Thomas Lompe Gerhard Zürn Selim Jochim André Wenz

More Related