80 likes | 222 Views
第一章 单元复习. 第三课时. 算法案例的应用习题分析. INPUT m , n. DO. r=m MODn. m=n. n=r. LOOP UNTIL r=0. PRINT m. END. 例 1 阅读下列程序:若输入的两个数 m=428 , n=284 ,求计算机输出的数. 4. 例 2 求 324 , 243 , 270 三个数的最大公约数. 27. 例 3 已知 f(x)=8x 7 +5x 6 +3x 4 +2x+1, 用秦九韶算法去 f(2) 的值. f(x)=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1.
E N D
第一章 单元复习 第三课时 算法案例的应用习题分析
INPUT m,n DO r=m MODn m=n n=r LOOP UNTILr=0 PRINT m END 例1 阅读下列程序:若输入的两个数m=428,n=284,求计算机输出的数. 4
例2 求324,243,270三个数的最大公约数. 27 例3 已知f(x)=8x7+5x6+3x4+2x+1,用秦九韶算法去f(2)的值. f(x)=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1 f(2)=1397
例4 用秦九韶算法求多项式f(x)=anxn+an-1xn-1+…+a1x+a0的值,令 v0=an,vk=vk-1x+an-k (k=1,2,…,n). 若f(x)=3x5+4x4+5x3+2x2+2x+1,当x=3时,求v4的值. V4=270
例5 把十进制数104化为三进制数. 104=10212(3) 例6 把八进制数2376(8)化为五进制数. 2376(8)=1278=20103(5)
例7 在等式 3×6528=3 ×8256中,方框内是同一个一位数,编写一个程序,判断该数是否存在,若存在,输出x的值.
x=1 开始 x=1 a=10x+3 b=30+x A=a×6528 B=b×8256 否 A≠B? 是 x=x+1 输出x 否 x>9? 是 输出x不存在 结束 DO a=10x+3 b=30+x A=a*6528 B=b*8256 IF A<>B THEN x=x+1 LOOP UNTIL x>9 PRINT x不存在 ELSE PRINT x END IF END
作业: P51复习参考题B组:1,3.