210 likes | 220 Views
This study focuses on sample TN205 from the eastern Lepontine Alps, demonstrating the capabilities of Theriak/Domino in analyzing the metamorphic evolution of metapelites. The sample contains garnet, white mica, biotite, staurolite, and other minerals. Staurolite growth is observed at the expense of paragonite. The P-T evolution of the rock is described, and equilibrium assemblage diagrams are provided.
E N D
Equilibrium assemblage diagrams: sample TN205 1 mm T. Nagel, C. de Capitani and M. Frey, J. metamorphic Geol., 2002, 20, 309-324
Equilibrium assemblage diagrams: sample TN205 Sample TN205. Sample TN205 from Nagel et al. 2002 will be repeatedly used in the following to demonstrate the capabilities of Theriak/Domino. This metapelite was collected from the second staurolite zone in the eastern Lepontine Alps, is rich in K and Na, with a low K/(K + Na) ratio of 0.51 and a high Fe/(Fe + Mg) ratio of 0.72. It contains garnet, white mica, biotite, staurolite, paragonite, plagioclase, quartz, chlorite and accessory ilmenite, rutile and apatite. The matrix assemblage is Grt-Ms-Bi-Qtz-Pl-St. Relics of a high-pressure assemblage are Grt-Ms-Pg. Contrary to other metapelites from the same area, this sample does not contain kyanite. Staurolite is observed to grow at the expense of paragonite. The P-T evolution of this rock is described in Nagel et al. 2002 and is similar to TN291, for which some diagrams were published. The database used here is JUN92 (based on Berman, 1988) with improved solution models for white mica (Keller et al. 2005) and Chlorite (Hunziker 2003). The (simplified) bulk composition in moles of TN205 is Si(50.36) Al(30.54) Fe(6.23) Mg(2.46) Ca(1.07) Na(4.62) K(4.73) O(160.965). For the calculations, excess water was added. T. Nagel, C. de Capitani and M. Frey, J. metamorphic Geol., 2002, 20, 309-324
Equilibrium assemblage diagrams: sample TN205 Staurolite (Fig. 3a) Four staurolite zones can be distinguished in the study area (Fig, 3a). In the zone 1, north of the generally accepted staurolite/kyanite mineral zone boundry (e.g. Niggli & Niggli, 1965, Frey et al., 1999), staurolite is rarely present and occurs as tiny idiomorphic crystals in exceptionally Al-rich rocks (see also Klein, 1976 and Löw, 1987). Staurolite-bearing samples in this zone contain the assemblage Qtz+Grt+Phe+Pg+St+Ky+/-Bt+/-Chl. They are always devoid of plagioclase and commonly contain kyanite and abundant whit mica (Fig. 4a). The boundry between zones 1 and 2 represents the staurolite/kyanite mineral zone boundry of previous authors. Within zone 2 staurolite is more frequent and occurs in the assemblage Qtz+Grt+Phe+St+Pl+/-Bt. Porphyroblasts up to 2 cm in size, are present predominantly in Na-rich samples. In contrast to zone 1, porphyroblastic staurolite occurences in zone 2 are commonly related to the presence of plagioclase (Fig. 4b) and also often appear widely distributed, although the modal amount and the crystal size in metapelites decrease significantly at the zone 2-zone 3-transition and kyanite becomes the dominant Al-excess phase. In the southernmost part of the study area (zone 4) staurolite ist virtually absent. Chlorite always postdates staurolite in zones 1-3. T. Nagel, C. de Capitani and M. Frey, J. metamorphic Geol., 2002, 20, 309-324
Equilibrium assemblage diagrams: sample TN205 open folder “TheriakDomino.../Calgary2010.../TN205” cd to folder “TheriakDomino.../Calgary2010.../TN205” (includes THERIN, JUN92.bs, tcdb55c2p)
Equilibrium assemblage diagrams: sample TN205 Simplified bulk composition in moles of the elements. (Ti, Mn ignored) Si 50.36 Al 30.54 Fe 6.23 Mg 2.46 Ca 1.07 Na 4.62 K 4.73 O 160.965 Input in THERIN: (excess H2O) 600 4000 0 SI(50.36)AL(30.54)FE(6.23)MG(2.46)CA(1.07)NA(4.62)K(4.73)O(160.965)H(60)O(30) *
Equilibrium assemblage diagrams: sample TN205 THERIN: 600 4000 0 SI(50.36)AL(30.54)FE(6.23)MG(2.46)CA(1.07)NA(4.62)K(4.73)O(160.965)H(60)O(30) * theriak database: JUN92.bs type of calculations: loop Temperature and Pressure: 600 4000 Several blanks
Equilibrium assemblage diagrams: sample TN205 ----------------------- equilibrium assemblage: ----------------------- P = 4000.00 bar P(Gas) = 4000.00 bar T = 600.00 C = 873.15 K stable phases: 7 loop = 23 loop2 = 1 max.phases = 368 gcalc = 149723 blkshift = 1.46549E-14 G(-) = 2.27715E-10 G(System) = -94687555.48 stepsize = 9.46623E-08 R = 8.3143000 phase N mol% x x activity act.(x) ----- - ---- - - -------- ------- 0 3 GARNET_Alm 1.123696 2.580055 GROSSULAR 0.032547 3.25475E-02 4.84023E-05 4.84023E-05 PYROPE 0.085071 8.50707E-02 1.04536E-03 1.04536E-03 ALMANDINE 0.882382 8.82382E-01 6.81032E-01 6.81032E-01 [Ca(M)] = 0.032547 [Mg(M)] = 0.085071 [Fe(M)] = 0.882382 Mg/(Fe+Mg) = 0.087933 0 4 FSP_Ab 5.064830 11.629066 ALBITE 0.787402 7.87402E-01 7.37948E-01 7.37948E-01 K-FELDSPAR 0.023000 2.30005E-02 5.40849E-01 5.40849E-01 ANORTHITE 0.189598 1.89598E-01 2.99186E-01 2.99186E-01 Si(pfu) = 2.810402 0 5 BIOTITE_Ann 0.352717 0.809854 PHLOGOPITE 0.376458 3.76458E-01 5.33519E-02 5.33519E-02 ANNITE 0.623542 6.23542E-01 2.42436E-01 2.42436E-01 [Fe(M)] = 0.376458 [Mg(M)] = 0.623542 Mg/(Fe+Mg) = 0.376458 0 6 WHITE_MICA_Ms 4.892733 11.233923 MUSCOVITE 0.793972 7.93972E-01 7.61497E-01 7.61497E-01 PARAGONITE 0.129160 1.29160E-01 4.69996E-01 4.69996E-01 MCELADONITE 0.022549 2.25491E-02 4.46249E-03 4.46249E-03 FCELADONITE 0.054319 5.43188E-02 8.78971E-03 8.78971E-03 [Si(Z)] = 0.769217 [Al(Z)] = 0.230783 Mg/(Fe+Mg) = 0.293349 Si(pfu) = 3.076868 0 11 CORD_fCd 1.997193 4.585640 CORDIERITE 0.282263 2.82263E-01 7.96723E-02 7.96723E-02 HY_CORDIERITE 0.134458 1.34458E-01 1.80789E-02 1.80789E-02 FE_CORDIERITE 0.395080 3.95080E-01 1.56089E-01 1.56089E-01 HY_Fe_CORDIERITE 0.188199 1.88199E-01 3.54189E-02 3.54189E-02 Mg/(Fe+Mg) = 0.416721 39 0 A-QUARTZ 6.656293 15.283134 99 0 STEAM 23.465735 53.878329 (Fe/Mg): GARNET - BIOTITE KD = 6.2622 ln(KD) = 1.8345 (Fe/Mg): GARNET - WHITE MICA KD = 4.3058 ln(KD) = 1.4600 ... ...
Equilibrium assemblage diagrams: sample TN205 --------------------------------------- volumes and densities of stable phases: --------------------------------------- solid phases N volume/mol volume[ccm] vol% | wt/mol wt [g] wt % | density [g/ccm] ------------ | | GARNET_Alm 1.1237 116.6203 131.0459 6.4471 | 488.1638 548.5478 9.6691 | 4.185923 FSP_Ab 5.0648 101.5879 514.5256 25.3134 | 265.6241 1345.3408 23.7139 | 2.614721 BIOTITE_Ann 0.3527 154.9164 54.6417 2.6882 | 476.2633 167.9863 2.9610 | 3.074325 WHITE_MICA_Ms 4.8927 142.1368 695.4371 34.2138 | 397.8200 1946.4267 34.3091 | 2.798854 CORD_fCd 1.9972 242.9972 485.3124 23.8762 | 633.3740 1264.9699 22.2973 | 2.606507 A-QUARTZ 6.6563 22.7846 151.6608 7.4613 | 60.0843 399.9387 7.0496 | 2.637060 ---------- -------- | ---------- -------- | ---------- total of solids 2032.6234 100.0000 | 5673.2103 100.0000 | 2.791078 gases and fluids N volume/mol volume[ccm] wt/mol wt [g] density [g/ccm] ---------------- STEAM 23.4657 23.6579 555.1490 18.0153 422.7418 0.761492 ----------------------------- H2O content of stable phases: ----------------------------- | wt% of wt% of wt% of solid phases N H2O[pfu] H2O[mol] H2O [g] | phase solids H2O.solid ------------ | BIOTITE_Ann 0.3527 1.000 0.3527 6.3543 | 3.78263 0.11201 5.3980 WHITE_MICA_Ms 4.8927 1.000 4.8927 88.1439 | 4.52850 1.55369 74.8781 CORD_fCd 1.9972 0.645 1.2888 23.2184 | 1.83549 0.40926 19.7240 -------- ---------- | -------- total H2O in solids 6.5343 117.7166 | 2.07496 | wt% of gases and fluids N H2O[pfu] H2O[mol] H2O [g] | phase ---------------- | STEAM 23.4657 1.000 23.4657 422.7418 | 100.00000
Equilibrium assemblage diagrams: sample TN205 THERIN: 600 4000 0 SI(50.36)AL(30.54)FE(6.23)MG(2.46)CA(1.07)NA(4.62)K(4.73)O(160.965)H(60)O(30) * • Calculate a P-T equilibrium assemblage diagram, using the database JUN92.bs • Temperature range: 520 – 780 oC • Pressure range: 2000- 20000 Bar domino Several blanks X-axis TC 520 780 Y-axis P 2000 20000 calculation type . labeling of reactions 1 dot
Equilibrium assemblage diagrams: sample TN205 table 1): FSP BIOTITE WHITE MICA CORD aQz H2O = (2)FSP BIOTITE WHITE MICA CORD aQz H2O 2): (2)FSP BIOTITE WHITE MICA CORD aQz H2O = (2)FSP BIOTITE WHITE MICA CORD H2O 3): (2)FSP BIOTITE WHITE MICA CORD H2O = SPIN (2)FSP BIOTITE WHITE MICA CORD H2O 4): SPIN (2)FSP BIOTITE WHITE MICA CORD H2O = SPIN (2)FSP WHITE MICA CORD H2O 5): SPIN (2)FSP WHITE MICA CORD H2O = SPIN (2)FSP WHITE MICA CORD Co H2O 6): SPIN (2)FSP WHITE MICA CORD Co H2O = SPIN (2)FSP CORD Co H2O 7): FSP WHITE MICA CHL4 CTOID aQz H2O = FSP WHITE MICA STAU CHL4 CTOID aQz H2O 8): FSP WHITE MICA STAU CHL4 CTOID aQz H2O = FSP WHITE MICA STAU CHL4 aQz H2O 9): FSP WHITE MICA STAU CHL4 aQz H2O = GARNET FSP WHITE MICA STAU CHL4 aQz H2O 10): GARNET FSP WHITE MICA STAU CHL4 aQz H2O = GARNET FSP BIOTITE WHITE MICA STAU CHL4 aQz H2O 11): GARNET FSP BIOTITE WHITE MICA STAU CHL4 aQz H2O = GARNET FSP BIOTITE WHITE MICA STAU aQz H2O 12): GARNET FSP BIOTITE WHITE MICA STAU aQz H2O = GARNET FSP BIOTITE WHITE MICA CORD aQz H2O 13): GARNET FSP BIOTITE WHITE MICA CORD aQz H2O = GARNET (2)FSP BIOTITE WHITE MICA CORD aQz H2O 14): GARNET (2)FSP BIOTITE WHITE MICA CORD aQz H2O = GARNET (2)FSP WHITE MICA CORD aQz H2O 15): GARNET (2)FSP WHITE MICA CORD aQz H2O = GARNET (2)FSP WHITE MICA CORD H2O 16): GARNET (2)FSP WHITE MICA CORD H2O = GARNET (2)FSP WHITE MICA CORD Si H2O 17): GARNET (2)FSP WHITE MICA CORD Si H2O = SPIN GARNET (2)FSP WHITE MICA CORD Si H2O 18): SPIN GARNET (2)FSP WHITE MICA CORD Si H2O = SPIN GARNET (2)FSP CORD Si H2O 19): SPIN GARNET (2)FSP CORD Si H2O = SPIN (2)FSP CORD Si H2O 20): GARNET FSP (2)WHITE MICA CHL4 CTOID aQz H2O = FSP (2)WHITE MICA CHL4 CTOID aQz H2O 21): GARNET FSP (2)WHITE MICA CHL4 aQz H2O = GARNET FSP (2)WHITE MICA CHL4 CTOID aQz H2O 22): GARNET FSP (2)WHITE MICA CHL4 aQz H2O = GARNET FSP (2)WHITE MICA STAU CHL4 aQz H2O 23): GARNET FSP (2)WHITE MICA STAU CHL4 aQz H2O = GARNET FSP WHITE MICA STAU CHL4 aQz H2O 24): GARNET FSP BIOTITE WHITE MICA STAU aQz H2O = GARNET FSP BIOTITE WHITE MICA STAU aQz Si H2O 25): GARNET FSP BIOTITE WHITE MICA STAU aQz Si H2O = GARNET FSP BIOTITE WHITE MICA aQz Si H2O 26): GARNET FSP BIOTITE WHITE MICA aQz Si H2O = GARNET FSP BIOTITE WHITE MICA bQz Si H2O 27): GARNET FSP BIOTITE WHITE MICA bQz Si H2O = GARNET (2)FSP BIOTITE WHITE MICA bQz Si H2O 28): GARNET (2)FSP BIOTITE WHITE MICA bQz Si H2O = GARNET (2)FSP BIOTITE bQz Si H2O 29): GARNET (2)FSP BIOTITE bQz Si H2O = GARNET (2)FSP BIOTITE CORD bQz Si H2O 30): GARNET (2)FSP BIOTITE CORD bQz Si H2O = GARNET (2)FSP CORD bQz Si H2O 31): GARNET FSP (2)WHITE MICA STAU CHL4 aQz H2O = GARNET FSP BIOTITE (2)WHITE MICA STAU aQz H2O 32): GARNET FSP BIOTITE (2)WHITE MICA STAU aQz H2O = GARNET FSP BIOTITE WHITE MICA STAU aQz H2O 33): GARNET BIOTITE (2)WHITE MICA CHL4 aQz H2O = GARNET BIOTITE (2)WHITE MICA aQz H2O
Equilibrium assemblage diagrams: sample TN205 theriak database: JUN92.bs type of calculations: loop Temperature and Pressure: 590 12000 Temperature and Pressure: 590 17000 Temperature and Pressure: 700 14500
Equilibrium assemblage diagrams: sample TN205 Gr Ms Pg Gr Ms Pg Plag Gr Ms Pg Bi +Qtz +H2O
Equilibrium assemblage diagrams: sample TN205 48): GARNET (2)WHITE MICA CTOID aQz H2O = GARNET (2)WHITE MICA aQz H2O Gr Ms Pg Ctd Gr Ms Pg 48 Gr Ms Pg Plag Gr Ms Pg Bi +Qtz +H2O
Equilibrium assemblage diagrams: sample TN205 Pg Plag Ms Kfs
Equilibrium assemblage diagrams: sample TN205 Pg Plag Ky Si St Ms Crd Kfs
Equilibrium assemblage diagrams: sample TN205 Pg Plag Chl Bi Ky Si St Ms Crd Kfs
Equilibrium assemblage diagrams: sample TN205 Pg Plag Chl Bi Ky Si St Ms Crd Kfs