1 / 53

TITLE

TITLE. DEVELOPMENTS AND APPLICATIONS OF THE GAS ELECTRON MULTIPLIER ~ GEM ~. Fabio SAULI. INFN-Trieste and TERA Foundation CERN-Geneva-Switzerland. BUT: TOO FRAGILE EASILY DAMAGED BY DISCHARGES. CATHODE. ANODE. CATHODE. 200 µm. MICRO-PATTERN GAS DETECTORS:. MSGC. THE ANCESTOR

jeroen
Download Presentation

TITLE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TITLE DEVELOPMENTS AND APPLICATIONS OF THE GAS ELECTRON MULTIPLIER ~ GEM ~ Fabio SAULI INFN-Trieste and TERA Foundation CERN-Geneva-Switzerland

  2. BUT: TOO FRAGILE EASILY DAMAGED BY DISCHARGES CATHODE ANODE CATHODE 200 µm MICRO-PATTERN GAS DETECTORS: MSGC THE ANCESTOR THE MICRO-STRIP GAS CHAMBER MSGC: POSITION ACCURACY ~ 50 µm TWO-TRACK RESOLUTION ~ 500 µm RATE CAPABILITY ~ 1 MHz/mm2 A. Oed, Nucl. Instr. Meth. A263(1988)351

  3. GAS ELECTRON MULTIPLIER (GEM): GEM PRINCIPLE THIN METAL-COATED POLYMER FOIL CHEMICALLY ETCHED ~ 50-100 HOLES mm2 TYPICAL GEM: 50 µm Kapton 5 µm Copper 70 µm holes at 140 µm pitch 5-10,000 INDEPENDENT PROPORTIONAL COUNTERS per cm2! F. Sauli, Nucl. Instr. and Meth. A386(1997)531

  4. 70 µm 55 µm GEM MANUFACTURING GEM MANUFACTURING (CERN PROCESS) 50 µm Kapton +5 µm Cu both sides Photoresist coating, masking, exposure to UV light Metal etching Kapton etching Second masking Edge metal etching and cleaning

  5. 10 cm GEM PRODUCTION AT CERN GEM SHAPES LARGE GEM FOIL FOR COMPASS: 1500÷2000 FOILS MADE 1 cm2 to 2000 cm2 30-200 µm HOLES, 50-300 µm PITCH “STANDARD” GEM: 10x10 cm2 MAGNETIC SPECTROMETER (OSAKA UIV.)

  6. GEM SHAPES FLEXIBILITY OF SHAPE ROUND GEM (30 cm Ø ) ESA PROTOTYPE HALF-MOON GEM FOR TOTEM:

  7. 1-D STRIPS PADS 2-D STRIPS PAD ROWS COICE OF ANODE READOUT PATTERNS READOUT PATTERNS CERN Tokyo Univ. CNS

  8. GEM DETECTORS PERFORMANCE SINGLE GEM PERFORMANCES GAIN VS VOLTAGE: ENERGY RESOLUTION 5.9 keV 55Fe : 20% FWHM R. Bouclier et al Nucl. Instr. and Meth. A 396 (1997) 50

  9. DISCHARGE PROBABILITY ON 5 MeV (FROM 220Rn) E ~ 1 MeV/cm DRIFT INDUCTION MULTIGEM DETECTORS MULTIGEM CASCADED GEMS PROVIDE HIGHER GAIN AT LOWER VOLTAGE C. Büttner et al, Nucl. Instr. and Meth. A409(1998)79 S. Bachmann et al, Nucl. Instr. and Meth. A438(1999)376

  10. 3.106 Hz mm-2 GEM HIGH RATE VERY HIGH RATE CAPABILITY RADIATION HARDNESS (AGING): 200 mC mm-2 ~ 4 •1012 mips mm-2 J. Benlloch et al, IEEE NS-45(1998)234 M. Alfonsi et al, Nucl. Instr. and Meth. A518(2004)106

  11. Honeycomb plates GEM foils 2-D Readout board GEM DETECTOR FOR COMPASS COMPASS CHAMBERS LIGHT CONSTRUCTION: ~ 0.7% X0 22 TRIPLE-GEM CHAMBERS, 31x31 cm2 ACTIVE 2-D CHARGE READOUT B. Ketzer et al, Nucl. Instr. and Meth. A535(2004)314

  12. COMPAS TGEM 31x31 cm2, 12-SECTORS+BEAM KILLER ~ 100 FOILS PRODUCED AT CERN Sector separation Voltage-controlled Central disk C. Altumbas et al, Nucl. Instr. and Meth. A 490(2002)177

  13. 65 µm rms COMPASS CHAMBERS PERFORMANCES COMPASS RESULTS POSITION ACCURACY UNIFORMITY OF EFFICIENCY: ~ 97% FOR MINIMUM IONIZING TRACKS, HIGH INTENSITY RUNS (2.5x104 Hz mm-2) TIME RESOLUTION 12 ns rms B. Ketzer et al, Nucl. Instr. and Metrh. A535(2004)314

  14. G=10000 DISCHARGES DISCHARGE PROBABILITY COMPASS TRIPLE-GEM: PSI πM1 beam No discharges in 12 hrs of operation at gain 104 (+ 4 years of operation in COMPASS!) @ GAIN 104 DISCHARGE PROBABILITY < 10-12 (DISCHARGES PER INCIDENT PARTICLE) S. Bachmann et al, Nucl. Instr. and Meth. A470(2001)548

  15. TIME RESOLUTION TIME RESOLUTION INTRINSIC TIME RESOLUTION: 4-GEM with reflective photocathode (isochronous electrons): USING A FASTER GAS (LHCb MUON TRIGGER) Ar-CO2-CF4 (45-15-40) M. Alfonsi et al, Nucl. Instr. and Meth. A535(2004)319 D. Mormann et al, Nucl. Instr. and Meth. 504(2003)93

  16. TOTEM GEM GEM DETECTOR FOR TOTEM CERN-HELSINKI) READOUT: VFAT 128-CHANNELS DIGITAL READOUT WITH FAST OR HALF-MOON SHAPED TRIPLE-GEM 10-CHAMBERS BEAM SETUP: L. Ropelewski, Vienna Instrumentation Conf. 2007

  17. TOTEM TRIPLE-GEM CHAMBERS TOTEM CHAMBERS FRAMED GEM: READOUT BOARD:

  18. bonding contact for pads pads radial strips Ni Au 15 mm Cu 50 mm Polyimide 15 mm Cu Epoxy glue 25 mm Polyimide 5 mm Cu 10 mm Cu Epoxy glue TOTEM Readout 125 mm FR4 TOTEM READOUT TOTEM CHAMBERS READOUT: PADS AND STRIPS READOUT BOARD: Radial strips (accurate track’s angle) Pad matrix (fast trigger) READOUT: VFAT 128-CHANNELS DIGITAL READOUT WITH FAST OR 5-LAYERS PC BOARD

  19. TOTEM CHAMBERS TEST RESULTS TEST RESULTS LABORATORY TEST CHARGE SHARING ON 55Fe SOURCE: BEAM TEST TWO-CHAMBERS CORRELATION L. Ropelewski, Vienna Instr. Conf. (Feb 07)

  20. PIXEL AND STRIPS GEM CHAMBER (COMPASS UPGRADE) THIN CHAMBERS READOUT ELECTRODE: CENTER: 32x32 PIXELS, 1 mm2 EACH SIDES: 512x512 STRIPS, 400 µm PITCH THIN TRIPLE GEM CHAMBERS : 0.2 % X0 F. Haas et al, Vienna Instr. Conf (Feb. 2007)

  21. QUALITY CONTROL QUALITY CONTROL DEVELOPMENT OF SEMI-AUTOMATIC SYSTEMS DIGITAL IMAGE ANALYSIS HOLE FITTING T. Hilden, Helsinki

  22. QUALITY CONTROL HOLE’S DIAMETER DISTRIBUTION AND DEFECTS IDENTIFICATION T. Hilden, Helsinki

  23. GEM TPC TPC MPGD MPGD READOUT OF TIME PROJECTION CHAMBERS FAST ELECTRON SIGNAL T~20 ns (-> ~ 1mm) NARROW PAD RESPONSE s ~ 1 mm VERY GOOD MULTI-TRACK RESOLUTION V ~ 1 mm3 STRONG ION FEEDBACK SUPPRESSION I+/I- < 0.1% NO ExB DISTORTIONS FREEDOM IN END-CAP DESIGN ROBUST, RADIATION HARD PADS INFLATION!

  24. GEM-TPC FOR LEGS LEGS (LASER ELECTRON GAMMA SOURCE) AT BNL: COSMIC TRACKS: Bo Yu, LBL TPC Workshop (Berkeley 7-8 April 2006)

  25. TO AVOID DISCHARGES: ADDED GEM FOIL MICRO-PIXEL TPC MICRO-PIXEL TPC COMPTON CAMERA WITH µTPC + SCINTILLATORS COSMIC TRACKS K. Hattori et al, Vienna Instr. Conf. (Feb. 2007)

  26. T2K GEM TPC PROTOTYPE FOR T2K HARP TPC WITH TRIPLE GEM END CAP READOUT: 8x8 mm2 PAD PLANE E. Radicioni, IEEE Nucl. Sci. Symp. San Diego (Oct. 2006)

  27. MPGD TPC FOR THE INTERNATIONAL LINEAR COLLIDER GEM TPC DESY GEM TPC (DESY-AACHEN) POSITION RESOLUTION: AACHEN GEM-TPC: 130 µm M. Janssen et al, Nucl. Instr. Meth. A566(2006)75 M. Killenberg et al, Nucl. Instr. Meth. A530(2004)251

  28. Field cage Preamplifiers Bulkhead Drift electrode Detectionplane KEK MPGD TPC GEM-MICROMEGAS TPC STUDYES AT KEK JECCEE MAGNET 85 cm Ø 1 m LONG M. Kobayashi, Vienna Instrum. Conf. (Feb. 2007)

  29. DRIFT TRANSFER THE TPC DILEMMA PAD DILEMMA SMALL TRANSVERSE DIFFUSION GIVES BETTER ACCURACY BUT REQUIRES SMALL PAD SIZE FOR CHARGE SHARING MICROMEGAS: DRIFT DIFFUSION ONLY FOR 1 m DRIFT FWHM ~ 1 mm MULTIGEM: INCREASED DIFFUSION IN TRANSFER REGIONS FOR 1 m DRIFT FWHM ~ 1.4 mm Computed with Steve Biagi’s MAGBOLTZ

  30. OPTIMIZATION OF PAD GEOMETRY OPTIMIZATION OF READOUT PAD GEOMETRY J. Kaminski, LBL TPC Workshop (Berkeley 7-8 April 2006) TWO-TRACK RESOLUTION STUDIES WITH LASER BEAMS (Victoria-DESY)

  31. 0.8 0.4 MicroMEGAS GAS: Ar-isobutane E = 220 V/cm B = 1 T GEM GAS: P5 E = 100 V/cm B = 1 T PAD PITCH RESOLUTION (mm) RESOLUTION (mm) DIFFUSION 0 0 0 300 0 300 DRIFT DISTANCE (mm) DRIFT DISTANCE (mm) STUDIES OF OPTIMUM PAD SIZE PAD DILEMMA MEASUREMENTS AND SIMULATIONS FOR PAD SIZE ~ 1 mm MULTIGEM STRUCTURES BETTER AT SHORT DRIFT DISTANCE, BECAUSE OF ADDITIONAL AVALANCHE SPREAD M. Kobayashi, Vienna Instr. Conf. (2007) KEK

  32. mesh resistive foil glue pads PCB CHARGE SPREAD RESISTIVE ANODE READOUT: RC CHARGE SPREAD MEASURED RESOLUTION @ 5 TESLA MICROMEGAS WITH RESISTIVE ANODE: • OPEN QUESTIONS: • UNIFORMITY OF RESISTIVITY • - RATE CAPABILITY • - LOSS IN TWO-TRACK RESOLUTION

  33. IMPROVING TPC PERFORMANCES CF4 GAS - VERY LOW DIFFUSION - NON FLAMMABLE - HYDROGEN FREE (LOW NEUTRON CROSS SECTION) CF4 : Computed with MAGBOLTZ

  34. Ar-CH4 Ar-C2H8 CF4 CF4 GAS GEM-TPC OPERATION IN CF4 (H=0) GAIN COMPARISON FOR A TRIPLE GEM : ~100 µm ACCURACY WITHOUT MAGNETIC FIELD! S.X. Oda et al, Nucl. Instr. Methods A566(2006)312 (Tokyo Univ. CNS, ……)

  35. CHARGING UP GEM CHARGING-UP SCHEMATICS OF DOUBLE-CONICAL GEM CHARGING UP: SMALL, RATE-DEPENDENT INITIAL GAIN INCREASE (~30%): BEFORE AFTER C. Altumbas et al, Nucl. Instr. and Meth. A490(2002)177 HIGHER FIELD->HIGHER GAIN

  36. CHARGING UP CHARGING UP: STANDARD SINGLE AND TRIPLE GEM 8 keV X-RAYS DOTS: MEASURED GAIN FIT TO DATA ASSUMING GAIN (TGEM)= GAIN3(SGEM) FOR EQUAL GAIN (~103): HV(SGEM)=510 V HV(TGEM)=3x310 V GAIN INCREASE IS VOLTAGE INDEPENDENT: POLARIZATION? G. Croci, L. Rolpelewski, F. Sauli (2007)

  37. CHARGING-HOLE SHAPE CHARGING UP VS HOLE SHAPE SINGLE, DOUBLE AND TRIPLE POLYMER ETCHING: STANDARD SINGLE ETCH: SPECIAL TRIPLE ETCH: GAIN SHIFT: SUM OF TWO EFFECTS: POLARIZATION (INCREASE) CHARGING (DEPENDS ON HOLE SHAPE) G. Croci, L. Rolpelewski, F. Sauli (2007)

  38. LASER ETCH LASER-ETCHED GEMS (RIKEN) NO CHARGING UP: T. Tamagawa et al, Nucl. Instr. Meth. A560(06)418

  39. CYLINDRICAL GEM CYLINDRICAL GEM DETECTORS - CERN DEVELOPMENT E. David, M. Van Stenis, L. Ropelewski, F. Sauli (CERN - DT2)

  40. CYLINDRICAL GEM DETECTORS CYLINDRICAL GEM (NA49 UPGRADE) 2-D STRIP READOUT LOW MASS PROTOTYPE FOR CHLOE (FRASCATI): L. Ropelewski, Vienna Instr. Conf. 2007 G. Bencivenni et al, Vienna Instr. Conf. 2007

  41. BONUS RADIAL GEM TPC FOR BoNuS (JLAB) 3200 PIXELS READOUT EVENT DISPLAY: H. Fenker, IEEE Nucl. Sci. Symp (Puerto Rico, 2005)

  42. PHOTON DETECTION UV PHOTON DETECTION WITH GEM REFLECTIVE CsI PHOTOCAHODE SINGLE PHOTOELECTRON POSITION ACCURACY CsI-COATED TRIPLE GEM Center of gravity distribution for two UV beams, 200 µm apart: EDRIFT ~ 0 e = 55 µm FURTHER MULTIPLICATION R. Bouclier et al, IEEE Trans. Nucl. Science NS-44(1997)646 T. Meinschad et al, Nucl. Instr. and Meth. A535(2004)324

  43. U DOUBLE PHOTON EVENT: PAD ROWS INTERCONNECTED ALONG THREE DIRECTIONS: 2.4 mm V 1.1 mm W 1.3 mm FAST RICH ( 2 ns resolution) T. Meinschad et al, Nucl. Instr. and Meth. A535(2004)324 HEXABOARD HEXABOARD PAD READOUT HEXAGONAL PADS PLANE, 500 µm PITCH

  44. Hadrons e+ e- E HADRON BLIND PHENIX UPGRADE - HADRON BLIND DETECTOR WINDOWLESS CHERENKOV COUNTER CsI-COATED GEM DETECTOR CF4 RADIATOR 24 TGEM DETECTORS WITH PAD READOUT A. Kozlov et al, Nucl. Instr. and Meth.A523(2004)344 I. Ravinovich, Quark Matter 2005

  45. PULSE HEIGHT: electrons hadrons HADRON BLIND PHENIX HADRON BLIND DETECTOR ELECTRON-HADRON DISCRIMINATION: C. Woody et al., 2006 IEEE NSS/MIC Proceedings Z. Fraenkel et al, NIMA 546(2005) 466

  46. 3xGEM TIMEPIX 600 mm 3 pixel functionality modes 14 mm 14 mm TIMEPIX GEM THE ULTIMATE MPGD: INTEGRATED PIXEL ELECTRONICS READOUT TIMEPIX: 256x256 PIXELS 55 µm x 55 µm GEM DIFFUSION SPREAD: CLUSTER COUNTING VERY GOOD 2-TRACK RESOLUTION M. Titov, Vienna Insr. Conf. (Feb. 2007)

  47. POLARIMETER DEDICATED CMOS PIXEL READOUT CIRCUIT 15x15 mm2 ACTIVE, ~ 100 kPIXELS (470 PIXELS/mm2) R. Bellazzini et al, Nucl. Instr. and Methods A435(2004)477

  48. 1 mm2 2 1 GEM POLARIMETER POLARIMETER MEASURE THE AVERAGE POLARIZATION OF SOFT X-RAYS ANGULAR DISTRIBUTION FOR POLARIZED SOFT X-RAYS: R.Bellazzini et al, Nucl. Instr. Methods A572(2007)160

  49. GEM IMAGER PHOTON IMAGER UV FLOODLIGHT CsI on QUARTZ WINDOW FINE PITCH GEM 30 µm HOLES @ 50 µm PITCH CMOS PIXEL READOUT 4 µm rms R. Bellazzini et al, Vienna Instr. Conf (Feb. 2007)

  50. GAS MPGD GAS LIQUID CRYOGENIC DETECTORS CRIOGENIC TWO-PHASE DETECTOR: ELECTRONS EXTRACTION AND MULTIPLICATION LOW TEMPERATURE GEM OPERATION: He, 4.2 K A. Buzulutskov et al, Nucl. Instr. Meth. A548(2005)487 A. Bondar et al, Nucl. Instr. Meth. A 556(2005)273 )

More Related