600 likes | 689 Views
A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 6 Supporting Processors. Objectives. Learn about the characteristics and purposes of Intel and AMD processors used for personal computers Learn about the methods and devices for keeping a system cool
E N D
A+ Guide to Managing and Maintaining Your PC, 7e Chapter 6 Supporting Processors
Objectives • Learn about the characteristics and purposes of Intel and AMD processors used for personal computers • Learn about the methods and devices for keeping a system cool • Learn how to install and upgrade a processor • Learn how to solve problems with the processor, the motherboard, overheating, and booting the PC A+ Guide to Managing and Maintaining Your PC, 7e
Types and Characteristics of Processors • Processor • Installed on motherboard • Determines system computing power • Two major processor manufacturers • Intel and AMD Figure 6-1 An AMD Athlon 64 X2 installed in socket AM2+ with cooler not yet installed Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Types and Characteristics of Processors (cont’d.) • Features affecting processor performance and motherboards • System bus speeds the processor supports • Processor core frequency • Motherboard socket and chipset • Multiprocessing ability • Memory cache • Amount and type of DDR, DDR2, DDR3 memory • Computing technologies the processor can use • Voltage and power consumption A+ Guide to Managing and Maintaining Your PC, 7e
How a Processor Works • Three basic components • Input/output (I/O) unit • Manages data and instructions entering and leaving the processor • Control unit • Manages all activities inside the processor • One or more arithmetic logic units (ALUs) • Performs all logical comparisons, calculations A+ Guide to Managing and Maintaining Your PC, 7e
Figure 6-2 Since the Pentium processor was first released in 1993, the standard has been for a processor to have two arithmetic logic units so that it can process two instructions at once Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How a Processor Works (cont’d.) • Processor internal memory caches (L1, L2, L3) • Holds data and instructions to be processed by ALU • Busses • Front-side bus (FSB) • Internal • Back-side bus (BSB) A+ Guide to Managing and Maintaining Your PC, 7e
How a Processor Works (cont’d.) • Processor frequency (speed) • Speed at which processor operates internally • Motherboard firmware • Automatically detects processor speed, adjusts system bus speed accordingly A+ Guide to Managing and Maintaining Your PC, 7e
How a Processor Works (cont’d.) • Three methods to improve performance • Multiprocessing • Processor contains more than one ALU • Multiple processors • Installing more than one processor on a motherboard • Multi-core processing • Processor housing contains two or more cores operating at same frequency, independently of each other • Dual core, triple core, quad core, octo core A+ Guide to Managing and Maintaining Your PC, 7e
Figure 6-4 Quad-core processing with L1, L2, and L3 cache and the memory controller within the processor housing Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How a Processor Works (cont’d.) • Memory cache (L1, L2, or L3) • Holds anticipated data and instructions needed by controller • Improves performance • Static RAM (SRAM) • Holds data as long as power on • Lets processor bypass slower dynamic RAM (DRAM) • Memory controller • Included in processor package • Significant increase in system performance A+ Guide to Managing and Maintaining Your PC, 7e
Figure 6-5 Cache memory (SRAM) is used to temporarily hold data in expectation of what the processor will request next Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Intel Processors Table 6-1 Current Intel processors A+ Guide to Managing and Maintaining Your PC, 7e
Intel Processors (cont’d.) Table 6-1 Current Intel processors (continued) A+ Guide to Managing and Maintaining Your PC, 7e
Intel Processors (cont’d.) • Processor identification • Processor number • Example: Core 2 Quad processors • Use five-character value beginning with “Q” • eSpec number printed on processor • Intel Processor Spec Finder site identifies exact processor • Centrinotechnology improves laptop performance • Processor, chipset, wireless network adapter interconnected as a unit A+ Guide to Managing and Maintaining Your PC, 7e
AMD Processors Table 6-2 Current AMD processors A+ Guide to Managing and Maintaining Your PC, 7e
Cooling Methods and Devices • Processor overheating results • Processor damage and instability • Entire system overheating results • Sensitive electronic component damage • Devices used to keep system cool • CPU fans, case fans, coolers, heat sinks, liquid cooling systems, dust-preventing tools • Important • Keep processor and entire system cool A+ Guide to Managing and Maintaining Your PC, 7e
Coolers, Fans, and Heat Sinks • Cooler sits on top of processor • Maintains 90–110 degrees F temperature • Consists of fan, heat sink • Made of aluminum, copper, combination of both • Bracketed to motherboard using wire, plastic clip • Thermal compound eliminates air pockets • Fan power cord connects to 4-pin fan header Figure 6-9 A cooler sits on top of a processor to help keep it cool Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Coolers, Fans, and Heat Sinks (cont’d.) Figure 6-9 A cooler sits on top of a processor to help keep it cool Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Figure 6-11 Thermal compound is already stuck to the bottom of this cooler that was purchased boxed with the processor Courtesy: Course Technology/Cengage Learning Figure 6-12 A cooler fan gets its power from a 4-pin PWM header on the motherboard Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Dealing with Dust • Dust insulates PC parts like a blanket • Causes overheating • Dust inside fans • Jams fans, causing overheated system • Ridding PC of dust • Make it a part of regular preventive maintenance • Tools • Antistatic vacuum • Compressed air A+ Guide to Managing and Maintaining Your PC, 7e
BIOS Power Management Settings for the Processor • Advanced Configuration and Power Interface (ACPI) • Current power management standards • Used by BIOS, hardware, and OS • Four modes indicate power-saving function levels • S1 state:hard drive, monitor turned off and everything else runs normally • S2 state: hard drive, monitor, processor turned off • S3 state: everything shut down except RAM and enough of the system to respond to a wake-up call • S4 state: everything in RAM copied to hard drive file, then system shuts down (hibernation) A+ Guide to Managing and Maintaining Your PC, 7e
Memory Technologies • Random access memory (RAM) • Holds data and instructions used by CPU • Static RAM (SRAM) and dynamic RAM (DRAM) • Both volatile memory Figure 7-1 RAM on motherboards today is stored on DIMMs Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
DIMM Technologies • DIMM (dual inline memory module) • 64-bit data path • Independent pins on opposite sides of module • Older DIMMs • Asynchronous with system bus • Synchronous DRAM (SDRAM) • Runs synchronously with system bus • Two notches • Uses 168 pins A+ Guide to Managing and Maintaining Your PC, 7e
DIMM Technologies (cont’d.) • Double Data Rate SDRAM • Also called DDR SDRAM, SDRAM II, DDR • Two times faster than SDRAM • DDR2 SDRAM • Faster than DDR and uses less power • DDR3 SDRAM • Faster than DDR2 and uses less power • DDR2 and DDR3 • Use 240 pins • Not compatible: use different notches • Several factors affect capacity, features, and performance A+ Guide to Managing and Maintaining Your PC, 7e
DIMM Technologies (cont’d.) • Single-sided DIMM • Memory chips installed on one side of module • Double-sided DIMM • Memory chips installed on both sides of module • Memory bank • Memory processor addresses at one time • 64 bits wide • DIMMs can always be installed as single DIMMs on a motherboard A+ Guide to Managing and Maintaining Your PC, 7e
Figure 7-3 Three identical DDR3 DIMMs installed in a triple-channel configuration Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
DIMM Technologies (cont’d.) • DIMM Speed • Measured in MHz or PC rating • PC rating • Total bandwidth between module and CPU • DDR2 PC rating • Usually labeled PC2 • DDR3 PC rating • Usually labeled PC3 A+ Guide to Managing and Maintaining Your PC, 7e
DDR3 Example • Motherboard using DDR3 triple-channel DIMMs Figure 7-11 Four DDR3 slots on a motherboard Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
Inside a Hard Drive • Hard disk drive (HDD) or hard drive sizes • 2.5" size for laptop computers • 3.5" size for desktops • 1.8" size for low-end laptops, other equipment • Hardware technologies inside the drive • Solid state or magnetic • Support technicians need to know about: • Solid state and magnetic technologies • Data organization inside a hard drive A+ Guide to Managing and Maintaining Your PC, 7e
Solid State, Magnetic, and Hybrid Drives • Solid state drive (SSD) or solid state device (SSD) • No moving parts • Built using nonvolatile flash memory • Expensive technology • Magnetic hard drive • One, two, or more platters, or disks • Stacked together, spinning in unison inside a sealed metal housing • Firmware controls data reading, writing and motherboard communication • Hybrid hard drives use both technologies A+ Guide to Managing and Maintaining Your PC, 7e
Figure 8-2 Inside a hard drive Courtesy: Course Technology/Cengage Learning Figure 8-3 A hard drive with two platters Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How Data Is Organized On a Hard Drive • Hard drive disk surface divided into concentric circles (tracks) • Track divided into 512-byte segments (sector, record) • Cylinder • All tracks are the same distance from platters center Figure 8-4 A hard drive or floppy disk is divided into tracks and sectors; several sectors make one cluster Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How Data Is Organized On a Hard Drive (cont’d.) • Drive housing circuit board firmware responsibilities • Writing and reading data to tracks and sectors • Keeping track of data storage on the drive • BIOS and OS • Use logical block addressing (LBA) to address all hard drive sectors A+ Guide to Managing and Maintaining Your PC, 7e
Figure 8-5 The bottom of a hard drive shows the circuit board that contains the firmware that controls the drive Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How Data Is Organized On a Hard Drive (cont’d.) • Hard drive installation • Windows initializes and identifies drive as a basic disk • Writes Master Boot Record (MBR) • High-level formatting performed • Specifies partition size and file system used • Partition can be primary or extended • Extended can be divided into one or more logical drives • File system • Overall structure OS uses to name, store, organize files on a drive A+ Guide to Managing and Maintaining Your PC, 7e
How Data Is Organized On a Hard Drive (cont’d.) • Cluster: smallest unit of disk space for storing a file • Contains one or more sectors Figure 8-6 A hard drive with four partitions; the fourth partition is an extended partition Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
How Data Is Organized On a Hard Drive (cont’d.) • Primary and extended partition creation • When drive or OS is first installed • After existing partition becomes corrupted • Disk Management tool • File system choices • Windows XP • FAT32, NTFS • exFAT if Service Packs 2 & 3 installed with download • Windows Vista with Service Pack 1 or later • FAT32, NTFS, exFAT A+ Guide to Managing and Maintaining Your PC, 7e
The ATA Interface Standards • Define how hard drives and other drives interface with a computer system • Standards • Developed by Technical Committee T13 • Published by American National Standards Institute (ANSI) • Categorized into two groups • PATA: older, slower standard • SATA: faster, newer standard A+ Guide to Managing and Maintaining Your PC, 7e
The ATA Interface Standards (cont’d.) • Parallel ATA or EIDE drive standards or Integrated Drive Electronics (IDE) • Allows one or two IDE connectors on a motherboard • Each use 40-pin data cable • Advanced Technology Attachment Packet Interface • Required by EIDE drives (e.g., CD or DVD) • Types of PATA ribbon cables • Older cable • 40 pins and 40 wires • 80-conductor IDE cable • 40 pins and 80 wires • Maximum recommended length of either is 18 inches A+ Guide to Managing and Maintaining Your PC, 7e
Figure 8-12 A SATA hard drive subsystem uses an internal SATA data cable Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
SCSI Technology • Small Computer System Interfacestandards • System bus to peripheral device communication • Support either 7 or 15 devices (standard dependent) • Provides better performance than ATA standards • SCSI subsystem • SCSI controller types: embedded or host adapter • Host adapter supports internal and external devices • Daisy chain: combination of host adapter and devices • Each device on bus assigned SCSI ID (0 - 15) • A physical device can embed multiple logical devices A+ Guide to Managing and Maintaining Your PC, 7e
Figure 8-14 Using a SCSI bus, a SCSI host adapter card can support internal and external SCSI devices Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e
SCSI Technology (cont’d.) • Terminating resistor • Plugged into last device at end of the chain • Reduces electrical noise or interference on the cable • Various SCSI standards • SCSI-1, SCSI-2, and SCSI-3 • Also known as regular SCSI, Fast SCSI, Ultra SCSI • Serial attached SCSI (SAS) • Allows for more than 15 devices on single chain • Uses smaller, longer, round cables • Uses smaller hard drive form factors, larger capacities • Compatible with serial ATA A+ Guide to Managing and Maintaining Your PC, 7e
SCSI Technology (cont’d.) • Fibre channel SCSI technology • Advantages • Connects up to 126 devices on a single Fibre Channel bus • Faster than other SCSI implementations when more than five hard drives strung together • Disadvantage • Expensive and has too much overhead • Except when used in high-end server solutions A+ Guide to Managing and Maintaining Your PC, 7e
Selecting a Hard Drive • Hard drive must match OS and motherboard • BIOS uses autodetection to prepare the device • Drive capacity and configuration selected • Best possible ATA standard becomes part of configuration • Selected device may not be supported by BIOS • Troubleshooting tasks (if device not recognized) • Flash the BIOS • Replace controller card • Replace motherboard A+ Guide to Managing and Maintaining Your PC, 7e
Selecting a Hard Drive (cont’d.) • Considerations: • Drive capacity • Spindle speed • Interface standard • Cache or buffer size • Average seek time (time to fetch data) • Hybrid drive • Manufacturer warranty (keep receipt) • Price range A+ Guide to Managing and Maintaining Your PC, 7e
Steps to Install a Serial ATA Drive • Step 1: Prepare for installation • Step 2: Install the drive • Turn off the computer and unplug it • Decide which bay will hold the drive • Slide drive in the bay and secure it (both sides) • Use correct motherboard serial ATA connector • Connect a SATA or 4-pin power connector from the power supply to the drive • Check all connections and power up the system • Verify drive recognized correctly A+ Guide to Managing and Maintaining Your PC, 7e
Steps to Install a Serial ATA Drive (cont’d.) • Step 3: Use Windows to partition and format the drive • Boot from Windows setup CD or DVD • Follow directions on the screen to install Windows on the new drive • If installing a second hard drive with Windows installed on first drive use Windows to partition and format the second drive A+ Guide to Managing and Maintaining Your PC, 7e
Steps to Install a Serial ATA Drive (cont’d.) • Installing a SATA drive in a removable bay • Turn handle on each locking device counterclockwise to remove it • Slide the bay to the front and out of the case • Insert hard drive in the bay • Use two screws on each side to anchor the drive in the bay • Slide the bay back into the case • Reinstall the locking pins A+ Guide to Managing and Maintaining Your PC, 7e