1 / 23

5-2

5-2. Parallel and Perpendicular Lines. Warm Up. Problem of the Day. Lesson Presentation. Pre-Algebra. 5-2. Parallel and Perpendicular Lines. Pre-Algebra. Warm Up Complete each sentence. 1. Angles whose measures have a sum of 90° are _______________ .

jerome-paul
Download Presentation

5-2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5-2 Parallel and Perpendicular Lines Warm Up Problem of the Day Lesson Presentation Pre-Algebra

  2. 5-2 Parallel and Perpendicular Lines Pre-Algebra Warm Up Complete each sentence. 1. Angles whose measures have a sum of 90° are _______________ . 2. Vertical angles have equal measures, so they are ______________. 3. Angles whose measures have a sum of 180° are ______________. 4. A part of a line between two points is called a ____________. complementary congruent supplementary segment

  3. objective for today Learn to identify parallel and perpendicular lines and the angles formed by a transversal.

  4. Vocabulary parallel lines perpendicular lines transversal

  5. Parallel lines are two lines in a plane that never meet, like a set of perfectly straight, infinite train tracks. Perpendicular lines are lines that intersect at 90° angles.

  6. The railroad ties are transversals to the tracks. The tracks are parallel. A transversal is a line that intersects any two or more other lines. Transversals to parallel lines have interesting properties.

  7. Parallel & Perpendicular lines

  8. Additional Example 1: Identifying Congruent Angles Formed by a Transversal Measure the angles formed by the transversal and parallel lines. Which angles seem to be congruent? 1, 3, 5, and 7 all measure 150°. 2, 4, 6, and 8 all measure 30°.

  9. Additional Example 1 Continued Angles marked in blue appear to be congruent to each other, and angles marked in red appear to be congruent to each other. 1 2 1 @3 @ 5 @7 3 4 2 @4 @6 @8 5 6 7 8

  10. Try This 1: Example 1 Measure the angles formed by the transversal and parallel lines. Which angles seem to be congruent? 1 2 4 3 5 6 8 7 1, 4, 5, and 8 all measure 36°. 2, 3, 6, and 7 all measure 144°.

  11. Try This 1: Example 1 Continued Angles marked in blue appear to be congruent to each other, and angles marked in red appear to be congruent to each other. 1 @4 @ 5 @8 2 @3 @6 @7 2 1 3 4 6 5 7 8

  12. Writing Math The symbol for parallel is ||. The symbol for perpendicular is .

  13. Additional Example 2A: Finding Angle Measures of Parallel Lines Cut by Transversals In the figure, line l || line m. Find the measure of the angle. All obtuse angles in the figure are congruent. A. 4 m4 = 124°

  14. –124° –124° Additional Example 2B: Finding Angle Measures of Parallel Lines Cut by Transversals Continued In the figure, line l || line m. Find the measure of the angle. B. 2 2 is supplementary to the angle 124°. m2 + 124° = 180° m2 = 56°

  15. Additional Example 2C: Finding Angle Measures of Parallel Lines Cut by Transversals Continued In the figure, line l || line m. Find the measure of the angle. All acute angles in the figure are congruent. C. 6 m6 = 56°

  16. 144° 1 m 4 3 6 5 n 8 7 Try This: Example 2A In the figure, line n || line m. Find the measure of the angle. All obtuse angles in the figure are congruent A. 7 m7 = 144°

  17. 144° 1 m 4 3 6 5 n 8 7 –144° –144° Try This: Example 2B In the figure, line n || line m. Find the measure of the angle. B. 5 5 is supplementary to the angle 144°. m5 + 144° = 180° m5 = 36°

  18. 144° 1 m 4 3 6 5 n 8 7 Try This: Example 2C In the figure, line n || line m. Find the measure of the angle. All acute angles in the figure are congruent C. 1 m1 = 36°

  19. If two lines are intersected by a transversal and any of the angle pairs shown below are congruent, then the lines are parallel. This fact is used in the construction of parallel lines.

  20. Let's Review!

  21. Lesson Quiz In the figure a || b. 1. Name the angles congruent to 3. 1, 5, 7 2. Name all the angles supplementary to 6. 1, 3, 5, 7 3. If m1 = 105° what is m3? 105° 4. If m5 = 120° what is m2? 60°

  22. What we learned today! Learned to identify parallel and perpendicular lines and the angles formed by a transversal.

More Related