1 / 24

Isovector and spin-isospin nuclear matter symmetry energy (Skyrme forces):

Isovector and spin-isospin nuclear matter symmetry energy (Skyrme forces): dependences on density and temperature. Fábio L. Braghin Int. Centr Cond Matter Physics-University of Brasilia, Brasilia, Brasil (and IF-USP, São Paulo, Brasil). Financial Support: IBEM/Ministry Scie.-Tech-Brazil

jerome
Download Presentation

Isovector and spin-isospin nuclear matter symmetry energy (Skyrme forces):

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Isovector and spin-isospin nuclear matter symmetry energy (Skyrme forces): dependences on density and temperature Fábio L. Braghin Int. Centr Cond Matter Physics-University of Brasilia, Brasilia, Brasil (and IF-USP, São Paulo, Brasil) Financial Support: IBEM/Ministry Scie.-Tech-Brazil FAP-DF (Brasilia) - Brazil FAPESP (São Paulo) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  2. Drop liquid (macroscopic) models NUCLEAR FORCE dependences on isospin in A(s,t) => (spin, isospin) = (s,t) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  3. Spin-Isospin symmetry energy Essentially restoring force of Gamow Teller (GT) resonances Probe for pionic degree of freedom, eg. in relativistic models Lagrangian (pseudo-scalar coupling): Related to an eventual instability of pion condensation (early 70, 80’s), higher r Eventually to DCC F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  4. Relating the symmetry energy coefficient GENERAL AND response function (static) IDEA For a small external perturbation in binding energy: Standard form: F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  5. Dynamical Polarizabilities with Skyrme forces Linear response on time dependent Hartree Fock for Skyrme forces such as: Behavior of small density fluctuations induced by small amplitude external perturbation that separates densities of neutrons and protons (s,t= 0,1) neutrons/protons spin up/down (s,t=1,1) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  6. Writing only the static limit for any densities of protons and neutrons Same standard form of polarizability v = b, c, d Asymmetry parameters Temperature dependence of A Form factors for Densities of states Particle densities Densities of momentA F.L.Braghin, IWND SE-09, Shanghai, August, 2009 NPA(2000); PRC(2005)

  7. Each of the densities (form factors)for rp = rn F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  8. Density dependence of the spin-isospin symmetry energy: FLB,IJMPE(2003) Very different predictions N Kaiser, CPT, (2006) (strongly dependent on each d.o.f./effect Mesons exchanges / D F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  9. Temperature dependence of n –p symmetry energy: A0,1 F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  10. 0.1 r0 (NN09) Exp (diff r and T*) Shetty et al 2006; Le Fevre et al (2005) Trautmann et al (2006) (INDRA; ALADIN) Kowalski et al(2006) .05r SLyb,b=0.5 (x) SLyb,b=0 ___ SGII,b=0.5 (+) SGII,b=0 ..... Samaddar et al: down triangles (2007) Lie-Wen Chen et al: up triangles (2007) Moustakidis: dashed (2008) Different momentum Dependent interactions, Clusters,.. F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  11. Full solid symbols , x: 1.33 r0 , b = 0 Empty symbols , +: 1.33 r0 , b = 0.25 • -Onsi et al (a) SkSC4 • - Lyon group SLy4 • - Onsi et al (b)SkSC6 • Sagawa/Giai • SGII F.L.Braghin, IWND SE-09, Shanghai, August, 2009 FLB, PRC(2009)

  12. 0.1 r0 Spin-isospin: ++ SGII (b=.5) ... SGII (b=0) xx SLy4 (b=.5) ___ SLy4 (b=0) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  13. 1.33 r0 Smoother variation at higher densities SGII SkSC4 SLy4 F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  14. Momentum dependence of the polarizability Limit of equal densities protons-neutrons Depending on the Skyrme force F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  15. Momentum dependence 0.1 r0 2 r0 Instability for n-matter F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  16. Spin-isospin: Momentum dependence at r0 T=0,1,2,4 Momentum dependence does not favor spin-isospin instabilities for several Skyrme forces (but yes for neutron-matter instabilities) (not yet extensive) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  17. Considering always: In static (or ~ dynamical) framework Eventually assuming: A = A (b,r, T,q,..) F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  18. Simultaneous dependence of symmetry energy on different variables Standard expression Variation of P Or More generally: Looking for data to plug with e.o.s. For finite nuclei; Densities-> N,Z/Vn Vp F.L.Braghin, IWND SE-09, Shanghai, August, 2009 PRC(2005)

  19. Summary • Calculating symmetry energies from nuclear polarizabilities • Dependences on T, n-p, momentum exchanged depend strongly on density • How can spin-isospin sym.energ interaction (together with(0,1)) be  probed by pions in  hic? • Differential equation available:give me eos and knowwwhich symmetryenergy iscompatible.. • - So far no surface or finite size effect taken into account. Thank you. 謝謝 F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  20. For The same Variation of A with a (or b) Example of ~ opposite behavior: De-Samaddar-nucl-th/0708.2183 F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  21. For: Heiselberg, Hjorth Jensen and Differential equation becomes: Stable Density As function Of n-p For the eos F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  22. Neutron matter: No assumption or consideration on dynamical and nuclear microscopical effects (forces, processes) - These will provide more precise expressions F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  23. Based onF.L.B., Phys. Rev. C (2009); Phys. Rev. C 71, 064303 (2005); Int. Journ. Mod. Phys. E12, 755 (2003); Nucl. Phys. A 665, 13 (2000); Nucl. Phys. A 696, 413 (2001)+ A 709, 487 (2002). Proceedings Brazilian Meetings on Nuc Phys 2007, 2008. F.L.Braghin, IWND SE-09, Shanghai, August, 2009

  24. Mostly quadratic terms in d r Scalar channel: incompressibility K and A00 have nearly the same behavior with b, a F.L.Braghin, IWND SE-09, Shanghai, August, 2009

More Related