1 / 26

Inflation + CDM Model = Cosmology Galaxies Formation

Bose-Einstein Condensates as Galactic Dark Matter Halos Tonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal. http:/www.fis.cinvestav.mx/~tmatos. Inflation + CDM Model = Cosmology Galaxies Formation. Mass Power Spectrum. Angular Power Spectrum. Summarizing.

jesse
Download Presentation

Inflation + CDM Model = Cosmology Galaxies Formation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bose-Einstein Condensates as Galactic Dark Matter HalosTonatiuh Matos, F. Siddhartha Guzman, Luis Ureña, Dario Nuñez, Argelia Bernal.http:/www.fis.cinvestav.mx/~tmatos • Inflation • + • CDM Model • = • Cosmology • Galaxies Formation

  2. Mass Power Spectrum

  3. Angular Power Spectrum

  4. Summarizing • M ~ 0.27  0.1, •  ~ 0.73  0.1 • 0 ~ 1. • Everything OK!!. • The Matter Components • M = b +  +  ~ • 0.04 + DM, • Where DM ~ 0.23. • But DM non  ??. DM + ~ 0.96

  5. Problems with theCDM Model • Dark Energy: • Extreme fine tuning for  • Coincidence • Dark Matter: • Cuspy central density profiles • Too much substructure • Too late galaxy formation • Too early metalicity formation • Etc.

  6. WIMPs • Density profile in Galaxies (r) r as r  0 • Numerical Simulations •   -1.5 • NFW(r)1/r 1/(r+b)2 • Observations   - 0.5 - 0 • Number of Dwarf Galaxies >>

  7. LSB Galaxies

  8. Galaxy Formation at z = 7 and z = 2

  9. Metalicity at z=2

  10. Some Alternatives • Self-Interacting DM • Warm DM • Super Heavy DM • Self-Annihilating DM • Repulsive DM • Fuzzy DM • Decaying DM • Scalar Field Dark Matter • V = V0 (cosh()-1)

  11. Bose-Einstein Condensates  + dV/d = 0 • V = V0[cosh() – 1]

  12. Bose-Einstein Condensates

  13. Bose-Einstein Condensates

  14. Bose-Einstein Condensates

  15. Bose-Einstein Condensates

  16. Scalar Field FluctuationsT. Matos and L. Ureña,Phys. Rev. D63(2001)063506

  17. Natural Cut-off

  18. Summarizing • SFDM model is insensitive to initial conditions • Behaves as CDM • Reproduces all the successes CDM above galactic scales. • Predicts a sharp cut-off in the mass power spectrum • The favored values for the two free parameters •   20 V0  (310-27 Mpl )4  m  10-23 eV

  19. Scalar Field Fluctuation = HaloTonatiuh Matos and F. Siddhartha GuzmanClass. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R);Tonatiuh Matos and F. Siddhartha Guzman,Class.Q. Grav. 18(2001)5055 • M  0.1 M2Planck /m • If m  10-23 eV • M 1012 Mo

  20. Scalar Field Fluctuation = HaloTonatiuh Matos and F. Siddhartha GuzmanClass. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R);Tonatiuh Matos and F. Siddhartha Guzman,Class.Q. Grav. 18(2001)5055

  21. Scalar Field Fluctuation = HaloTonatiuh Matos and F. Siddhartha GuzmanClass. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R);Tonatiuh Matos and F. Siddhartha Guzman,Class.Q. Grav. 18(2001)5055

  22. Density Profiles

  23. Density Profiles

  24. Density Profiles LSB Galaxies

  25. Conclusion • The scalar field is a good candidate to be the Dark Matter of the Universe

More Related