280 likes | 531 Views
Enabling High-Precision, High-Performance DSP Variable-Precision DSP Architecture. 2010 Technology Roadshow. Agenda. DSP system design trend Altera DSP architecture (28 nm) Summary. Key DSP Design Trend. 9-Bit Precision. Floating-point Precision. TeraFLOPs. 100 GMACs. Video
E N D
Enabling High-Precision, High-Performance DSPVariable-Precision DSP Architecture 2010 Technology Roadshow
Agenda • DSP system design trend • Altera DSP architecture (28 nm) • Summary
Key DSP Design Trend 9-Bit Precision Floating-point Precision TeraFLOPs 100 GMACs Video Surveillance Broadcast Systems Wireless Basestations Medical Imaging Military Radar High-Performance Computing Applications Moving to Variable and Higher Precisions
High-precision DSP Applications High-performance Computing Military High-precision multiply accumulate High-precision FIR filters High-precision FFTs Floating-point FFTs Floating-point matrix operations Medical Wireless Test and Measurement
Industry’s First Variable-precision DSP Block Set the Precision Dial to Match Your Application
DSP Builder Advanced Blockset HDL Automatically Optimized for System Clock Frequency and Latency
8-Channel Polyphase FIR Filter 8-Channel Polyphase FIR Filter 8-Channel Polyphase FIR Filter 8-Channel Polyphase FIR Filter Complex Mixer + Adder Complex Mixer + Adder Complex Mixer + Adder Complex Mixer + Adder 1024-point, Radix 4, Complex FFT 1024-point, Radix 4, Complex FFT 1024-point, Radix 4, Complex FFT 1024-point, Radix 4, Complex FFT DSP Builder Advanced Blockset AdvantageBuilding a High-performance DSP Datapath This Design Needs to Close Timing at 350 MHz. Portion of a High-end Radar Front-end Design 4 Instances
DSP Builder Advanced Blockset Design FlowBuild the Design in MATLAB/Simulink High-level Simulink Design Description Complex Mixer/Adder FIR Filter Complex FFT
DSP Builder Advanced Blockset Design FlowSet the Desired fMAX Within Simulink Set fMAX Constraints Within the High-level Simulink Design Description
36 36 36 36 36 36 36 36 Evolution of the DSP Block Stratix II FPGA Stratix III/IV FPGA Stratix V FPGA Variable-precision DSP Block DSP Block 72 64 32 72 DSP Half Block Variable-precision DSP Block 64 32 72 72 Variable-precision DSP Block 72 64 32 72 DSP Half Block Variable-precision DSP Block 72 64 32 72 Eight 18x18 Multipliers (Sum) Four 18x18 (Independent) Eight 18x18 Multipliers (Sum) Eight 18x18 (Independent) High-precision Mode Four 18x18 (Independent) Highest Performance, Highest Precision DSP (28 nm)
The First Variable-precision DSP Block 18-Bit Precision Mode High-Precision Mode First DSP Architecture with Two Native Precision Modes
Configurable X + _ 64-bit Acc 37 18 18 18 18 18 18 18 X X Sum Mode 18 Variable-precision DSP Block18-Bit Precision Mode Backward-compatible with Stratix III and Stratix IV FPGAs X 32 32 Independent Mode
Configurable 64 64 Acc Reg Acc Reg Variable-precision DSP BlockHigh-precision Mode 36 Bits 27 Bits 18x36 27x27 X X Input Register Input Register 18 Bits 27 Bits Competing 18x25 DSP Blocks are Limited to25-Bit Data Precision Only
Configurable 27 Bits 64 64 Acc Reg Acc Reg 27 27x27 27x27 X X co-eff Input Register Input Register 27 Bits 27 Bits Variable-precision DSP BlockFloating-point Precision FPGA Industry First! Single-precision Floating-point Mantissa MultiplicationCan Be Implemented in One Variable-precision DSP Block
Variable Precision with 64-Bit Cascade 64-Bit Accumulator 64-Bit Cascade Bus 64 Bits Allows for Cascading Without Loss in Precision
18 X 36 Bits 18 18 36 Bits X 18 18 36 Bits X 18 Variable Precision with 64-Bit Cascade 18-Bit Precision Mode 64-Bits Three Competing 18x25 DSP BlocksWould Be Required to Do This
FFTs Require High-precision Complex Multiply 18x25 Precision 18x18 Precision 18x36 Precision Data Width Increases with Each Stage; Coefficient Width Stays the Same
Variable Precision with 64-Bit Cascade Efficient Complex Multiply 18x18 Complex 18x25 Complex Competing 18x25 DSP Requires: 18x36 Complex 4 Blocks 8 Blocks 4 Blocks
Variable Precision with 64-Bit CascadeFloating-point Precision FPGA Industry First! OR Single-precision Mantissa Multiplication 27x27 Mode Double-precision Mantissa Multiplication 54x54 Mode
Variable Precision with 64-Bit CascadeSingle-precision Floating-point FFT 27x27 Complex Multiply FPGA Industry First! Eight Competing 18x25 DSP BlocksWould Be Required to Do This
Variable-precision DSP Advantage Achieve Performance Goals Using Half the FPGA DSP Resources
Variable-precision DSP Advantage ⅓ DSP Resources ½ DSP Resources ½ DSP Resources Fixed Precision Fixed Precision Fixed Precision Variable Precision Variable Precision Variable Precision Military Radar Wireless Basestations Video Processing
Variable-precision DSP Block Internal Coeff. Blocks Hard Pre-adder
D3 D2 D0 D1 + + C1 C0 X X + Variable-precision DSP BlockHard Pre-adder for Filters D3 D2 D1 D0 C0 C0 C1 C1 X X X X + + + Pre-adder Reduces Multiplier Count by Half
Variable-precision DSP BlockInternal Coefficient Register Banks 27 Bits 18 Bits • Dual, independent 18-bit or single 27-bit wide banks • Both are eight registers deep • Dynamic, independent register addressing • Eases timing closure and eliminates external registers 0 0 1 1 2 2 3 3 OR 4 4 5 5 6 6 7 7
For More Information • Download our DSP architecture whitepaper • FPGA Industry’s first variable precision DSP architecture • Download the Stratix V FPGA handbook