1 / 30

Matrix Based OFDM modeling and Introduction to MIMO modeling

Matrix Based OFDM modeling and Introduction to MIMO modeling. Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus Chief Scientist at Magna Design Net, Inc wada@ie.u-ryukyu.ac.jp http://www.ie.u-ryukyu.ac.jp/~wada/. Section 1. Matrix Based OFDM Modeling

jethro
Download Presentation

Matrix Based OFDM modeling and Introduction to MIMO modeling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matrix Based OFDM modelingandIntroduction to MIMO modeling Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus Chief Scientist at Magna Design Net, Inc wada@ie.u-ryukyu.ac.jp http://www.ie.u-ryukyu.ac.jp/~wada/ Fire Tom Wada, Univ. of the Ryukyus

  2. Section 1 Matrix Based OFDM Modeling Channel Matrix diagonalization by Unitary Matrix FFT Fire Tom Wada, Univ. of the Ryukyus

  3. SISO Channel Transmission Antenna Reception Antenna Single Input and Single Output(SISO) Channel Fire Tom Wada, Univ. of the Ryukyus

  4. OFDM Modulator Copy to make Guard Interval P / S OFDM symbol (1/f0) Tg MAP S / P IFFT Bit stream Generate Complex symbol d0~dN-1 Fire Tom Wada, Univ. of the Ryukyus

  5. Multi-path channel OFDM symbol (1/f0) Tg OFDM symbol (1/f0) Tg Fire Tom Wada, Univ. of the Ryukyus

  6. OFDM Demodulator S / P Remove Guard Interval FFT P / S Noise DEMAP Equalize OFDM symbol (1/f0) Tg Bit Stream Fire Tom Wada, Univ. of the Ryukyus

  7. FFT matrix Fire Tom Wada, Univ. of the Ryukyus

  8. IFFT matrix Fire Tom Wada, Univ. of the Ryukyus

  9. Twiddle Factor WNnk Fire Tom Wada, Univ. of the Ryukyus

  10. Multi-path channel in Matrix GI of n-1 Symbol n-1 GI of n Symbol n Fire Tom Wada, Univ. of the Ryukyus

  11. If Multi-path delay is small than GI length Channel Matrix is Cyclic Matrix by GI. Fire Tom Wada, Univ. of the Ryukyus

  12. Two path Multi path Channel Example Base Station Receiver Channel Impulse Response = [1, 0.5 , 0, 0] Fire Tom Wada, Univ. of the Ryukyus

  13. Two path Multi path Channel Example If time domain channel matrix is cyclic, Frequency Domain Channel Matrix is diagonal! Fire Tom Wada, Univ. of the Ryukyus

  14. Additive Noise Fire Tom Wada, Univ. of the Ryukyus

  15. How to recover sending signal from receiver signal.- EQUALIZE - Fire Tom Wada, Univ. of the Ryukyus

  16. Summary of Matrix model of OFDM Transmission Antenna Reception Antenna Channel Fire Tom Wada, Univ. of the Ryukyus

  17. Important Mathematics • Cyclic Matrix can be diagonalized by FFT and IFFT. • XH is Hermitian of X, that is, complex conjugate and transpose. Fire Tom Wada, Univ. of the Ryukyus

  18. Unitary Matrix • Unitary Matrix U can satisfy following property. • Eigen value of Channel Cyclic Matrix is Channel Transfer Function as (H(0), H(1), H(2), … ). Fire Tom Wada, Univ. of the Ryukyus

  19. Section 2 MIMO Channel Modeling Fire Tom Wada, Univ. of the Ryukyus

  20. SISO Channel • OFDM makes Multi-path channel simple complex h(k) for freq=k. Transmission Antenna Reception Antenna SISO Channel IFFT FFT Fire Tom Wada, Univ. of the Ryukyus

  21. MIMO Channel- Nr X Nt SISO Channels for Freq=k - Fire Tom Wada, Univ. of the Ryukyus

  22. Singular value decomposition of Nr x Nt Matrix H • Nr x Nt matrix H can be decomposed as below using Nr x Nr Unitary matrix V and Nt x Nt Unitary matrix U. • Σ is Nr x Nt diagonal matrix. Fire Tom Wada, Univ. of the Ryukyus

  23. SVD Example by Matlab(1) • H = • 1 2 3 • 2 4 5 • >> [U,S,V] = svd(H) • U = • -0.4863 -0.8738 • -0.8738 0.4863 • S = • 7.6756 0 0 • 0 0.2913 0 • V = • -0.2910 0.3396 -0.8944 • -0.5821 0.6791 0.4472 • -0.7593 -0.6508 -0.0000 • H = • 1 2 • 2 4 • 3 5 • >> [U,S,V] = svd(H) • U = • -0.2910 -0.3396 -0.8944 • -0.5821 -0.6791 0.4472 • -0.7593 0.6508 -0.0000 • S = • 7.6756 0 • 0 0.2913 • 0 0 • V = • -0.4863 0.8738 • -0.8738 -0.4863 Fire Tom Wada, Univ. of the Ryukyus

  24. SVD Example by Matlab(2) • H =  • 1.0000 + 1.0000i 2.0000 + 1.0000i • 1.0000 - 3.0000i 3.0000 - 1.0000i • >> [U,S,V] = svd(H) • U = • -0.4616 - 0.0659i -0.4907 + 0.7361i • -0.3956 + 0.7913i -0.2863 - 0.3680i • S =  • 5.0000 0 • 0 1.4142 • V = • -0.6594 0.7518 • -0.5934 + 0.4616i -0.5205 + 0.4048i • >> U*S*V' • ans = • 1.0000 + 1.0000i 2.0000 + 1.0000i • 1.0000 - 3.0000i 3.0000 - 1.0000i • >> U*S*V' • ans = • 1.0000 + 1.0000i 2.0000 + 1.0000i • 1.0000 - 3.0000i 3.0000 - 1.0000i • >> U'*U • ans = • 1.0000 0.0000 - 0.0000i • 0.0000 + 0.0000i 1.0000 • >> U*U' • ans = • 1.0000 0.0000 - 0.0000i • 0.0000 + 0.0000i 1.0000 Fire Tom Wada, Univ. of the Ryukyus

  25. MIMO communication H MIMO Channel Fire Tom Wada, Univ. of the Ryukyus

  26. Introduce pre-processing and post-processing H MIMO Channel NtxNt NrxNr Fire Tom Wada, Univ. of the Ryukyus

  27. There are K(=rank(H)) independent channel Fire Tom Wada, Univ. of the Ryukyus

  28. SVD-MIMO system H=VΣUH MIMO Channel NtxNt NrxNr Fire Tom Wada, Univ. of the Ryukyus

  29. Put them altogetherMIMO-OFDM system • Space Division Multiplexing by MIMO (K stream) • Orthogonal Frequency Division Multplxing (OFDM) NtxK KxNr NtxK NtxK NtxK NtxK IFFT FFT NtxK NtxK FFT IFFT FFT IFFT FFT IFFT Fire Tom Wada, Univ. of the Ryukyus

  30. Summary • This presentation shows matrix based modeling for both OFDM and MIMO and there are many similarity in mathematics. • OFDM realizes many parallel communication channels in frequency domain. • OFDM converts multi-path channel to simple one tap channel such as h(k)=a+bj for Frequency=k. • Then OFDM-based MIMO system can focus on simple channel matrix. • By singular value decomposition (SVD), MIMO channel matrix H can be decomposed to V*Σ*UH. • Non-zero elements of Σ (rank of H) indicates parallel communication channel in space. Fire Tom Wada, Univ. of the Ryukyus

More Related