1 / 16

结构图三种基本形式

结构图三种基本形式. G 1. G 1. G 1. G 2. G 2. G 2. G 1. G 1. G 2. G 1. G 2. G 2. G 1. 1+. 串 联. 并 联. 反 馈. 结构图等效变换方法. 1 三种典型结构可直接用公式. 1 不是 典型结构 不可 直接用公式. 2 相邻综合点可互换位置. 3 相邻引出点可互换位置. 2 引出点综合点 相邻, 不可 互换位置. 注意事项:. 引出点移动. H 2. G 3. G 4. G 2. G 1. 1. H 2. G 4. H 3.

jett
Download Presentation

结构图三种基本形式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 结构图三种基本形式 G1 G1 G1 G2 G2 G2 G1 G1 G2 G1 G2 G2 G1 1+ 串 联 并 联 反 馈

  2. 结构图等效变换方法 1 三种典型结构可直接用公式 1 不是典型结构不可直接用公式 2 相邻综合点可互换位置 3 相邻引出点可互换位置 2 引出点综合点相邻,不可互换位置 注意事项:

  3. 引出点移动 H2 G3 G4 G2 G1 1 H2 G4 H3 G3 G4 G1 G2 H1 H3 H1 a b

  4. 综合点移动 G3 G3 G1 G1 G2 G2 H1 H1 G1 向同类移动

  5. 作用分解 G4 G1 G2 G3 H3 H1 G4 G1 G2 G3 H3 H1 H3 H1

  6. 梅逊公式介绍 R-C : ∑Pk△k C(s) = R(s) △ △称为系统特征式 所有单独回路增益之和 ∑La — ∑LbLc—所有两两互不接触回路增益乘积之和 ∑LdLeLf—所有三个互不接触回路增益乘积之和 △k称为第k条前向通路的余子式 去掉第k条前向通路后所求的△ △=1- ∑La+ ∑LbLc-∑LdLeLf+… 其中: Pk—从R(s)到C(s)的第k条前向通路传递函数 求法:

  7. 梅逊公式例R-C G4(s) G1(s) G2(s) G3(s) R(s) C(s) H3(s) H1(s) △1=1 △2=1+G1H1 G4(s) G4(s) L1L2= (–G1H1) (–G3H3) = G1G3H1H3 L3= – G1G2G3H3H1 G1(s) G1(s) G1(s) G3(s) G3(s) G2(s) G2(s) G2(s) G3(s) G3(s) G3(s) P2= G4G3 P1=G1G2G3 L4= – G4G3 L2= – G3 H3 L1= –G1 H1 L1L4=(–G1H1)(–G4G3)=G1G3G4H1 L5 = – G1G2G3 C(s) =? R(s)

  8. 梅逊公式求C(s) N(s) G3(s) C(s) R(s) E(S) G2(s) G1(s) H2(s) H1(s) H3(s) L1= G1H1 L2= –G2H2 L3= –G1G2H3 L1L2= (G1H1)(-G 2 H2 ) R(s)[ ] G3G2 (1-G1H1) +G1G2 + G2 N(s) C(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2

  9. 梅逊公式求E(s) N(s) G3(s) C(s) R(s) E(S) G2(s) G1(s) H2(s) H1(s) H3(s) E(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2

  10. 梅逊公式求E(s) N(s) G3(s) C(s) R(s) G2(s) G1(s) H2(s) H1(s) H3(s) E(S) P1=1 △1=1+G2H2 P1△1= ? (1+G2H2) + E(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2

  11. 梅逊公式求E(s) G3(s) C(s) R(s) E(S) G1(s) G2(s) H2(s) H1(s) H3(s) (1+G2H2) E(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2 +

  12. 梅逊公式求E(s) G3(s) G1(s) C(s) R(s) E(S) G2(s) H2(s) H1(s) H3(s) (1+G2H2) + E(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2 P2= - G3G2H3 △2= 1 P2△2=? R(s)[ ] (- G3G2H3)

  13. 梅逊公式求E(s) G3(s) G1(s) C(s) R(s) E(S) G2(s) H2(s) H1(s) N(s) H3(s) P2= - G3G2H3 △2= 1 P2△2=? P1= –G2H3 △1= 1 R(s)[ ] (1+G2H2) (- G3G2H3) (–G2H3) N(s) + + E(s)= 1- G1H1+ G2H2+ G1G2H3-G1H1G2 H2

  14. 信号流图 e g c a d 1 b R(s) C(s) f h 四个单独回路,两个回路互不接触 前向通路两条 C(s) R(s) (1–bg) ed abcd + = – af – bg – ch – ehgf afch + 1

  15. 功放k3 +15v -15v +15v -15v -k2 -k1 SM TG 习题2-15(p72图2-63) 30k 20k 10k 10k ui u1 – ua u2 + uo 10k 10k ut 位置随动系统原理图

  16. km 3 k3 2 3 S(Tms+1) kts 5.21 5.21 习题2-15方块图 K0=30v/330o=1/11(伏/度)=5.21(伏/弧度) K1=3 k2=2 α=1+Rf/Ri=1+20/10=3 ui uo ua u1 u2 ut

More Related