580 likes | 617 Views
Sigam a Água -1. FOLLOW THE LIFE. . Solvent Biogenic elements Source of Free Energy.
E N D
FOLLOW THE LIFE • Solvent • Biogenic elements • Source of Free Energy searches for life within our solar system commonly retreat from a search for life to a search for “life as we know it,” meaning life based on liquid water, a suite of so-called “biogenic” elements (most famously carbon), and a usable source of free energy. (Chyba & Hand, 2005, p. 34)
FOLLOW THE LIFE • Follow the water • Follow the carbon • Follow the nitrogen • Follow the energy • Follow the entropy • Follow the information
Astrônomos descobrem planeta que pode ser habitável Astrônomos encontraram um planeta fora do nosso Sistema Solar que é po-tencialmente habitável, com temperaturas parecidas com as da Terra. A des-coberta foi considerada um grande passo na procura por vida extraterrestre. O planeta tem o tamanho certo, pode ter água em forma líquida e, em termos de Universo, está relativamente perto, a cerca de 20,5 anos-luz da Terra. Ele gira em torno de uma anã vermelha --uma estrela muito menor, menos luminosa e mais fria que o nosso Sol-- chamada de Gliese 581. Folha Online 24/04/2007 - 22h44 O planeta, batizado de Gliese 581c, foi descoberto pelo telescópio do Observatório Europeu do Sul (ESO) em La Silla, no Chile. Sistema planetário de Gliese 581 O novo planeta é cinco vezes mais pesado que a Terra. Não se sabe ainda se ele é rochoso como a Terra ou se é uma esfera de gelo, com água líquida na superfície. Se for rochoso, que é o que a teoria prevalecente propõe, tem um diâmetro cerca de 1,5 vez maior que o do nosso planeta. Se for uma esfera de gelo, seria maior ainda.
Instrumentos utilizados da descoberta de Gliese 581c Telescópio de 3,6m do ESO, em La Silla, Chile, a 2400m de altitude
Equipe descobridora de Gliese 581c Michel Mayor Uma equipe de onze astrônomos da Suíça, França, e Portugal. Esta equipe faz parte do grupo liderado por Michel Mayor, do Observatório de Genebra, na Suíça, responsável pela descoberta de 89 exoplanetas (até 4/6/2007) Há 242 exoplanetas descobertos até essa data
O Estranho Sistema Solar de Gliese 581 Distância “certa” para água líquida (temperatura= 0-40 C)
Gliese 581c – um mundo aquático? Um planeta de classe Aurélia? Um lado, dia para sempre Outro lado, noite eterna
Por que Gliese 581c seria habitável? Água Líquida !!!! Zona Habitável R
A História dos Cachinhos Dourados • No Sistema Solar: • Vênus sempre foi quente demais • Marte, no passado, já esteve no ponto. • A Terra em geral esteve no ponto, exceto em duas ocasiões de quase total congelamento Nem quente demais, senão ferve Nem frio demais, senão congela
Água Principal componente dos cometas e dos seres vivos Assim, o Oxigênio e o Hidrogênio são os elementos principais de seres vivos terrestres e do Universo Logo atrás vem o Carbono e o Nitrogênio.
DNA H O C N + P
A água também pode ser essencial para a vida em outros pontos do Universo • H2O = Hidrogênio + Oxigênio • Hidrogênio é oelemento mais abundante do Universo e o mais simples (só um próton) • Oxigênio (seis prótons e seis nêutrons) é o segundo elemento quimicamente ativo mais abundante • Hélio (dois prótons e dois nêutrons) é o segundo elemento mais abundante mas não é quimicamente ativo Afinal, há água por toda parte no Universo
Phase Diagram for Water Critical Point647 K, 22.064 MPa Triple Point273.16 K, 611.73 Pa
Liquid Water • H20 is the combination of the two most abundant chemical elements in the Universe • H20 is the most abundant tri-atomic molecule in the Universe (requires stars) • liquid H20 is much less common (a narrow range of pressure and temperatures) • liquid H20 requires planetary environments • highest boiling temp= 650 K (high pressures)
Water: Pros & Cons • It is easily done: it is a tri-atomic molecule and H and O are the first and third most abundant elements in the universe. • It remains in liquid form for a relatively large temperature range (0 – 100ºC); these limits could be extended under pressure and by the presence of dissolved salts. • This temperature range include temperatures high enough for chemical reactions to proceed at a relatively rapid pace, but not so high that collisions destroy important, large and fragile molecules.
Water: Pros & Cons • Water is a polar solvent so that it can discriminate between polar and non-polar molecules. Chemical discrimination results on the formation of mixed phases such as membranes, microenvironments and compartmentalization. • Water has a very large heat of vaporization and a large heat capacity. This means that the temperatures of a solution is stabilized by the thermal properties of water as a solvent. • Its relatively high viscosity protects living organisms from strong dynamical instabilities. • The surface tension of water, twice that of ammonia and three times that of alcohol, exceeds the surface tension of any other liquid known. • Its ice is less dense than that of water so that ice floats. Having a frozen ice cap protects life below the ice and prevents freezing throughout all the bulk of the liquid. (eg. EUROPA)
Water: Pros & Cons • It is rather corrosive and reactive. • It can hamper protein and nucleic acid concentrations • Its ice is less dense than that of water so that ice floats. The high reflectivity of water ice could lead to thermal negative runaway conductive to global glaciations, that could turn into killing events.
History of the Complexity in the Universe • 10-43 s 1. The space is born (4 extended dimensions) • 10-33 s 2. The matter is born (quarks & leptons) • 10-4 s 3. Baryons are born (quark confinements) • 1 minute 4. Nuclei are born (4He 2H 3He 7Li) • 300.000 yr 5. Atoms are born (H recombination) • 300 Myr 6. Heavy elements are born (C, O…) • 7. Heteromolecules are born (OH, CO, H2O…) • ~10 Gyr 8. Life is born (: at least 3.5 Gyr ago)
Transitions in the universe as the temperature decreases. Structures which freeze out as the universe cools include, matter, protons and neutrons, nuclei, atoms and molecules.
Transitions in the late Universe. The thin line beneath the CMB line shows how hydrogen cooled more rapidly than the CMB. The dashed line shows how this cooling would have continued if it had not been for the fact that a billion years after the big bang, the thermal energy of the hydrogen sank low enough to allow the weak gravitational binding energy to contract the densest clouds of hydrogen. These clouds then became denser and hotter and eventually formed the first stars in the universe. These massive stars emitted UV photons that heated and ionized the more rarified hydrogen (intergalactic medium : IGM). The formation of these first massive stars and the re-ionization of the IGM are represented by the vertical line at 109 years. The other lines originating at the same point represent the temperatures of hydrogen clouds that were dense enough to self-shield and avoid UV ionization. These clouds were gradually enriched with oxygen, carbon, nitrogen, iron and the other waste products of the supernovae explosions of thefirst, massive, short-lived stars. About 4.6 billion years ago one of these enriched clouds was shocked by a nearby supernova. This initiated collapse and star formation. One of the stars was the Sun. Planetary formation and formation of the Earth was part of this collapse (dotted line). Other, less dense clouds of H2 (represented by the three other thin lines) collapsed a bit but stayed at 10 or 20 K. The upper x axis shows that free energy is available once the temperature of the hydrogen is low enough to initiate gravitational collapse and star formation. Two adjacent grey strips are labeled “water”. The lower darker one is 0-100 C. The higher lighter one is 100-650 C; the highest temperatures at which water, under pressure, can exist.
Hot Ancestors and their Cool Descendants:Maximum Growth Temperatures
Phylogenetic tree of life based on 16S rRNA sequences (Pace 1997). Maximal growth temperatures have been used to color-code the branches
Água em Marte hoje • A baixa pressão atmosférica impede água liquída na superfície
Água líquida em Marte hoje? • Ponto Triplo da água: (T,p)=(271.16 K, 611.73 Pa) • Pressão média em Marte: T= 600 Pa • Pressão míxima: 30 Pa (Olympus Mons) • Pressão máxima: 1150 Pa (Hellas Planitia)
Thermophile bacteria Extremófilos • Temperatura: -15° C < T < 230° C • 0.06 < pH < 12.8 • 0 < Pressão < 1200 atm • Seu metabolismo pode dispensar o oxigênio • 20-40 milhões de anos de dormência • 2 ½ anos no espaço, a –250 C, sem nutrientes, água and expostos a radiação (Strep. Mitis) Antarctica Hidrotermal vents Criptoendoliths Hot geisers and volcans
Life in subglacial systems E u r o p a Kuhn