1 / 16

DISTRIBUSI BINOMIAL

This article provides examples and exercises on binomial and Poisson distributions, including calculations of probabilities for different scenarios.

jgarrison
Download Presentation

DISTRIBUSI BINOMIAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DISTRIBUSI BINOMIAL

  2. BERNOULLI PROCESS • The experiment consists of n repeated trials. • Each trial results in an outcome that may be classified as a success or a failure. • The probability of success, denoted by p, remains constant from trial to trial. • The repeated trials are independent.

  3. BINOMIAL DISTRIBUTION A Bernoulli trial can result in a success with probability p and a failure with probability q = 1-p. Then the probability distribution of the binomial random variable X, the number of successes in n independent trials, is

  4. CONTOH SOALDISTRIBUSI BINOMIAL (1) • The probability that a certain kind of component will survive a given shock test is ¾. Find the probability that exactly 2 of the next 4 components tested survive!

  5. CONTOH SOALDISTRIBUSI BINOMIAL (2) • The probability that a patient recovers from a rare blood disease is 0.4. If 15 people are known to have contracted this disease, what is the probability that exactly 5 survive?

  6. LATIHAN (1) • Sebuah produsen obat batuk memberikan pernyataan bahwa obat batuknya 90% efektif dalam menyembuhkan penyakit batuk. Apabila 7 orang dengan batuk serupa diberikan obat dari produsen itu, tentukan peluangnya (a) tepat 3 orang di antaranya sembuh (b) tepat 5 orang di antaranya sembuh (c) semuanya sembuh

  7. LATIHAN (2) • Seorang pemain basket memiliki peluang 0,7 untuk memasukkan bola ke dalam keranjang. Apabila ia melakukan 10 lemparan berturutan, tentukan peluang (a) tepat 6 bola berhasil masuk keranjang (b) tepat 3 bola berhasil masuk keranjang (c) tak kurang dari 8 bola masuk keranjang (d) tak ada bola yang masuk

  8. LATIHAN (3) • In a certain city district the need for money to buy drugs is given as the reason for 75% of all thefts. Find the probability that among the next 8 theft cases reported in this district, (a) exactly 2 resulted from the need for money to buy drugs; (b) at most 3 resulted from the need for money to buy drugs. (c) at least 3 resulted from the need for money to buy drugs.

  9. LATIHAN (4) • A traffic control engineer reports that 75% of the vehicles passing through a checkpoint are from within the state. What is the probability that more than 2of the next 9 vehicles are from out of the state?

  10. DISTRIBUSI POISSON

  11. POISSON PROBABILITY EXPERIMENT • The random variable is the number of times some event occurs during a defined interval. • The probability of the event is proportional to the size of the interval. • The intervals do not overlap and are independent.

  12. POISSON DISTRIBUTION • The probability distribution of the Poisson random variable X, representing the number of outcomes occuring in a given time interval or specified region denoted by t, is given by: e  0,718281828

  13. CONTOH SOALDISTRIBUSI POISSON (1) • Rata-rata banyaknya nasabah yang masuk ke dalam antrian bagian teller suatu bank setiap menitnya adalah 2. Tentukan peluang dalam 1 menit datang 3 nasabah ke dalam antrian bagian teller tersebut!

  14. CONTOH SOALDISTRIBUSI POISSON (2) Seorang sekretaris rata-rata menerima panggilan telepon sebanyak 3 buah dalam setiap 20 menit. Tentukan peluang dalam 1 jam berikutnya ia menerima 7 buah panggilan telepon. Jawab: λ = 0,15/menit, t = 60 menit λt = 0,15 . 60 = 9

  15. CONTOH SOALDISTRIBUSI POISSON (3) • Banyaknya kata yang salah ejaan dalam suatu surat kabar adalah 3 dalam tiap 4 halaman. Tentukan peluang dalam 10 halaman surat kabar tersebut terdapat kurang dari 4 kata salah ejaan. • λ = 0,75/halaman t = 10 halaman λt = 0,75 . 10 = 7,5 • P[X<4] = p(0;7,5) + p(1;7,5) + p(2;7,5) + p(3;7,5) = 0,0006 + 0,0041 + 0,0156 + 0,0389 = 0,0592.

  16. CONTOH SOALDISTRIBUSI POISSON (4) • Pada contoh soal sebelumnya, tentukan peluang dalam 10 halaman surat kabar tersebut terdapat lebih dari 3 kata salah ejaan. • P[X>3] = p(4;7,5) + p(5;7,5) + p(6;7,5) + p(7;7,5) + ... = 1 – [p(0;7,5) + p(1;7,5) + p(2;7,5) + p(3;7,5)] = 1 – 0,0592 = 0,9408.

More Related