1 / 27

Alkenes

Alkenes. E. Contain at least one C=C double bond General formula: C n H 2n (like cycloalkanes) Each carbon atom in a C=C double bond is sp 2 hybridized.  bond.  bonds. The double bond consists of a  bond and a  bond  bond from head-on overlap of sp 2 orbitals

jharkless
Download Presentation

Alkenes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Alkenes E • Contain at least one C=C double bond • General formula: CnH2n(like cycloalkanes) • Each carbon atom in a C=C double bond is sp2 hybridized  bond  bonds • The double bond consists of a  bond and a  bond •  bond from head-on overlap of sp2 orbitals •  bond from side-on overlap of p orbitals  bond A  bond is stronger than a  bond.  bond • Rotating a double bond requires breaking the  bond • NO FREE ROTATION at room temperature

  2. Alkene Nomenclature (Naming) • Parent chain = longest chain that includes the double bond(s) • The double bonds have priority and must have the lowest number(s) possible • The first C atom in the C=C bond indicates the double bond’s location (or number in naming) • Name, number, & alphabetize substituents as usual • Replace –ane ending with –ene ending • Two double bonds: -diene; three double bonds: -triene • Put double bond number in front of entire root name (i.e. 2-pentene indicates the double bond starts on carbon 2) 7. Cyclic alkenes: number the atoms in the ring starting with the double bond 2-hexene 3-butyl-2,4-hexadiene

  3. Naming Practice 2,4-hexadiene 4-ethyl-3,5-dimethyl-2-heptene 4-isopropyl-3,5-dimethyl-1,3,5-heptatriene 3,4-dimethyl-1,3-pentadiene

  4. Cis-trans isomerism in alkenes • Substituents will stay on the same or opposite sides of the double bond (no C=C bond rotation) X cis- 2-butene (same side) 2-butene (opposite sides) trans- • For cis-trans isomerism, each C in the double bond must have 2 different substituents attached (i.e. a C and a H, etc.) • Determining cis or trans: follow the parent chain through the double bond cis cis-3-methyl-2-heptene

  5. Cis/Trans Naming Practice trans,trans-2,4-hexadiene trans-4-ethyl-3,5-dimethyl-2-heptene No Cis or Trans No Cis or Trans Both CH3’s Both H’s Both H’s trans,trans-4-isopropyl-3,5-dimethyl-1,3,5-heptatriene 3,4-dimethyl-1,3-pentadiene

  6. Important Common Names H C C H R 2 R Ethylene Propylene Vinyl (branch) i.e. polypropylene = milk jugs i.e. polyethylene = plastic bags Allyl (branch) i.e. diallyllysergamide = derivative of LSD i.e. polyvinyl chloride = PVC pipe

  7. Arranging many double bonds • Cumulated C=C double bonds all in a row: C=C=C=C • Conjugated Single and double bonds alternate: −C=C−C=C−C=C− • Isolated >1 single bond between double bonds: −C=C−C−C=C−C−C=C− Lycopene 11 conjugated double bonds 2 isolated double bonds

  8. Reactions of Alkenes   + A-B  • Alkanes – substitution reactions • R-H + A-B  R-A + H-B • R = “residue”, a generic alkyl group • Alkenes – addition reactions  bond is electron-rich Thermodynamics: Hrxn = bonds broken – bonds formed = ( bond +  bond) – ( bond +  bond) Exothermic reaction

  9. Alkene Addition Reactions + A-B  A-B H-F, H-Cl, H-Br, H-I H-OH Br-Br, Cl-Cl, F-F H-H Reaction Hydrohalogenation (addition of H-X, X = halogen) Hydration (addition of H2O) Addition of halogens Hydrogenation (addition of H2)

  10. Markovnikov’s Rule • Consider the reaction C C + 1-chloropropane 2-chloropropane 1-propene • Two products are possible • Experimentally, only 2-chloropropane is formed • Markovnikov’s Rule: • The alkene carbon with the most H atoms gets the H • Hydrohalogenation (H-X), hydration (H2O) of alkenes Vladimir Markovnikov Why? Look at the reaction mechanism to find out...

  11. Hydrohalogenation Predict the product of the following hydrohalogenation reaction + HBr Anti-Markovnikov Product Remember: Markovnikov’s rule says that the H (from HBr) will bond to the alkene C with the most H’s OR Markovnikov Product

  12. Hydration Predict the product of the following hydration reaction + H2O Anti-Markovnikov Product OR Remember: Markovnikov’s rule says that the H (from H2O) will bond to the alkene C with the most H’s Markovnikov Product

  13. Halogenation + Br2 Trans isomer + Br2 The Br’s will add to opposite sides of a RING (anti addition) The Br’s will be forced into a trans conformation ALWAYS

  14. Hydrogenation • Occurs in the presence of a metal catalyst (like Pt) + H2/Pt cis isomer + H2/Pt Both H’s will add to the same side of a RING (syn addition) If branches are present, they will be forced into a cis conformation

  15. Hydrogenation of alkenes + H2/Pt vegetable oils unsaturated saturated Contains NO double bonds Contains double bonds

  16. Hydrohalogenation Determine any reactant(s) that could yield the given product of the following hydrohalogenation reaction + HBr 3-methyl-1-hexene Only possible reactant for this product + HBr trans-3-methyl-2-hexene Major product using M’s rule

  17. Hydrohalogenation Determine any reactant(s) that could yield the given product of the following hydrohalogenation reaction + HBr All three reactants could give this product trans-3-methyl-2-hexene 2-ethyl-1-pentene trans-3-methyl-3-hexene

  18. Halogenation Determine any reactant(s) that could yield the given product of the following halogenation reaction + Br2 trans-3,5-dimethyl-2-heptene Only one possible reactant in this case

  19. Alkene Reaction Summary • Hydrohalogenation (+ HX) • Hydration (+ H2O) • Halogenation (+ X2) • Hydrogenation (H2/Pt) Markovnikov’s rule Cis/trans with rings

  20. Polymerization of Alkenes • Polymer: a large molecule made by linking together small repeat units called monomers • Polymerization mechanism: radical chain reaction Monomer Polymer ethene (ethylene) polyethylene propene (propylene) polypropylene

  21. Alkynes E • Contain at least one CC triple bond with sp-hybridized C atoms • Triple bond: one  bond (sp orbitals), two  bonds (p orbitals) • Naming: triple bond indicated by –yne ending ethyne (acetylene) 4-methyl-1-pentyne • Reactivity: same addition reactions as alkenes • Use 2 equivalents of addition reagent (i.e. + 2HCl) • Use Markovnikov’s rule in the same manner

  22. Alkyne Naming Practice 2-methyl-3-hexyne 3,4-dimethyl-1-pentyne 3-methyl-1-pentyne 2,5-dimethyl-3-hexyne

  23. Hydrohalogenation of Alkynes Predict the product of the following hydrohalogenation reaction ? + 2HBr 1-pentyne Break the reaction into two steps, adding 1 HBr each time to the multiple bond + HBr + HBr Final Product Markovnikov’s rule still applies…

  24. Hydration of Alkynes Predict the product of the following hydration reaction ? + 2H2O 3,3-dimethyl-1-butyne Break the reaction into two steps, adding H2O each time to the multiple bond + H2O + H2O Markovnikov’s rule still applies… Final Product

  25. Halogenation of Alkynes Predict the product of the following halogenation reaction ? + 2Br2 3,3-dimethyl-1-butyne Break the reaction into two steps, adding Br2 each time to the multiple bond + Br2 + Br2 Final Product

  26. Hydrogenation of Alkynes Predict the product of the following hydrogenation reaction ? + 2H2 3,3-dimethyl-1-butyne This reaction will simply turn the alkyne to an alkene, and then to an alkane + H2 + H2 Final Product

  27. Alkyne Reaction Practice + 2HCl → 1. 2. 3. 4. 5. + 2H2O → + 2Br2 → + 2H2 → + 2HCl → AND

More Related