400 likes | 990 Views
Nanoelectromechanical Switches (NEM Relays & NEMFETs). Dimitrios Tsamados Adrian Ionescu EPFL. Elad Alon Tsu-Jae King Liu UC Berkeley. Kerem Akarvardar H.-S. Philip Wong Stanford. Outline. Part I: NEM Relays. Motivation Device operation Logic gate configurations
E N D
Nanoelectromechanical Switches (NEM Relays & NEMFETs) Dimitrios Tsamados Adrian Ionescu EPFL Elad Alon Tsu-Jae King Liu UC Berkeley Kerem Akarvardar H.-S. Philip Wong Stanford
Outline Part I: NEM Relays • Motivation • Device operation • Logic gate configurations • State-of-the-art • Scaling and performance • Issues • Conclusion Part II: NEMFETs
Motivation Motivation Two key properties unavailable in CMOS Infinite subthreshold slope Zero Leakage Ultra-low VDD without degrading Ion Zero static energy Ultra-low dynamic energy Ultra-low energy operation beyond the capability of CMOS
Motivation Extra Motivation • Hysteresis • Stiction • Low temperature process • High temperature operation • High radiation hardness • Cheap substrates SRAM and NV Memory Choi et al. IEDM 2007 (UC Berkeley) 3-D integration and hybrid NEMS/CMOS Chakraborty et al. IEEE Trans. Circ. Syst. 2007 (Case Western Reserve U.) Niche applications Reduced cost
Operation of the NEM Relay Conventional Device Structure & Operation limit stop 1 cantilever beam air gap Normalized Position S G D 0 VGS insulating substrate OFF-state infinite slope Drain Current zero leakage S G D VGS Pull-in voltage, Vpi =VDD,min Pull-out voltage, Vpo ON-state
Operation of the NEM Relay Logic Implementation and Interconnection VDD S D VDD S D G G laterally-actuated cantilever NEM RELAY MOSFET VDD in out "p-type" laterally-actuated cantilever "n-type" top view Lee et al. SPIE 2005 (Simon Fraser U. – Canada) GND CMOS CNEM • CMOS schematics can be used in CNEM logic circuits • No conductivity difference between the n-type and p-type relays • Simple layout enabling to small area
Operation of the NEM Relay Energy-Reversible (ER) CNEM Logic Gates Laterally-actuated ER CNEM Inverter Elastic potential energy, which is stored due to beam bending, is reversibly used for switching Akarvardar et al. DRC 2008 ER principle: Yang et al. MME 2003 Delft University – The Netherlands Top View
Operation of the NEM Relay Energy-Reversible CNEM Logic Gates 1 Normalized Position VDD,min 0 V V V 0 po pi GS (conventional) (energy - reversible) ER Relays: • Reduced VDD & dynamic energy • (unless hysteresis is prevented) • Experimentally demonstrated in RF • switches (VDD = 5 V instead of Vpi = 38 V) • Any logic function can be realized Pakula et al. (Delft U.) IEEE Sensors 2005 Conventional energy-reversible ER NAND Gate
State-of-the-Art The smallest 2-terminal switch ever reported: Jang et al. APL 92, 2008 (KAIST & Samsung – Korea) Vpi =13 V Vpo =8 V 300 nm • 15 nm gap • 35 nm beam thickness • TiN beam, sacrificial poly-Si, • wet etch + critical point dry • Several hundred cycles • endurance (insulator failure) zero leakage infinite slope
State-of-the-Art Self-assembled "CNT wafers" on pre-patterned substrates Hayamizu et al. Nature Nanotech 3 2008 (AIST – Japan) >1250 relays Parallel, scalable, and reproducible relay fabrication with > 95% structural yield ~5000 SWNTs
Constant-Field Scaling Constant-Field Scaling • Scaling => smaller and faster relay that dissipates less energy • vdW Forces tend to become dominant at nanoscale
Performance scaling L = 250 nm silicon 4 nm Fvdw↑ delay ↓ ~ 1 ns stiffer beams to compensate for Fvdw • 1 ns switching delay • 1.5 V supply voltage • 80 aJ switching energy • 0.03 μm2lateral inverter area • => competitive with CMOS • Zero leakage ~ 1 V increased VDD Negligible Fvdw => 1 ns @ VDD 150 mV Akarvardar et al. IEDM 2007
NEM relays vs. Low-Power CMOS Lg = 45 nm LSTP CMOS (ITRS): High VT (0.53 V) => Very low leakage (30 pA/μm) Zero leakage advantage of the NEM relay would only be apparent in logic circuits with relatively high device count and low activity CV/I = 1 ns @ VDD = 425 mV • NEM relays should achieve nanosecond-range intrinsic delay @ VDD << 425 mV • => Decrease the vdw forces substantially • How? • => And/or operate close to the stiction limit • Increased sensitivity to device param. Akarvardar et al. submitted to IEDM 2008
Issues • Contact reliability • hot switching • high current density • high impact velocity • 2. Sticking: limits the voltage scaling • 3. Packaging: hermetic sealing is required • 4. Tunneling: determines the minimum gap • 5. Long settling time & tip bouncing: tend to • increase the switching delay • 6. Brownian motion: leads to switching errors
Conclusion • NEM logic can become an alternative ultra-low power logic technologyif: • Contacts can be reliably implemented at nanoscale • Nanosecond range delays can be achieved at a • few 100 mV Detailed roadmapping and intensive engineering development are recommended
Hybrid M/NEMS • Hybrid M/NEM devices: • micro/nano movable parts • solid state semiconductor device involved in operation • Pure M/NEM devices: • micro/nano movable parts • passive device operation Ex: suspended nano-beams Ex: suspended-gate FETs Drain Gate Source
M/NEM-FET: device architectures Out-of-plane In-plane Move gate Move body Major advantages: new functionality and low power
M/NEM-FET abrupt switch Experiment: Out-of-plane movable gate • Resonant-Gate FET (Nathanson, 1966) • Suspended-Gate MOSFET (EPFL: A.M. Ionescu, ISQED 2001, IEDM 2005, 2006) • Nano-electro-mechanical FET (UC Berkeley, T.J. King, IEDM 2005) • Modeling of SG-FET (Stanford & EPFL: Akarvardar: IEEE TED 2008, Tsamados: SSE 2008) • Gate down • low Vt • Cox movable gate • Gate up: • high Vt • in-series Cgap Applications: power management, low power logic, memory
NEMS simulation & modeling Electrostatic NEMS: mechanical & electrostatic analysis Source: G. Li et al, Urbana-Champaign.
NEM-FET: scaling & simulation • Multi-physics simulation for hybrid NEM device design • Coupled FEA: 2D ANSYS-DESSIS for suspended-gate FET Simulation: 90nm NEM-FET
NEM-FET power management switch • NEM-FET vs. MOSFET power management switch: • dynamic VT • Ioff, Isubthreshold : 102 -104 • sleep area ~ MOSFET Replaced by NEM-FET
Hysteresis: 1T MEM-FET memory 1 Drain Gate Source 0 N. Abelé et al., IEDM 2006 • Electro-mechanical hysteresis: [ Vpull-in – Vpull-out ] • SG-MOSFET capacitor-less memory feasible • Hysteresis control! Scaling? Reliability?
Size & Voltage operation scaling (1) • nanogap scaling (Samsung) tbeam= 20nm tgap = 20nm NEM clamp switch with TiN beam memory cell array structure for high density non-volatile memory application M.-S. Kim et al., ISDRS 2007
VD=1.2V Size & Voltage operation scaling (2) SG-FET compliant to ITRS 90nm node: tox=2nm, L=65nm, channel doping Nch=3×1018cm−3, μ0=278cm2/Vs , air-gap g0=5nm, W=400nm, h=10nm, Young modulus, E=170GPa.
NEM-FET inverter • significant power savings (1-2 decades reduction) of inverter peak current • no leakage power compared with nano-meter scaled CMOS inverter.
Movable/vibrating gate transistor • Laterally (in-plane) vibrating gate • lateral MOS transistor, detection in drain current • +4.3dB experimental gain demonstrated compared to capacitive detection using same structure LETI-CEA • e-beam defines gaps (~47nm gap resol.). • L=10mm, W=165nm, d=120nm C. Durand et al., IEEE EDL 2008.
Double Gate switchable/vibrating body FET fres=2.4MHz, Q=6’000, Rm=200Ohm Laterally (in-plane) movable body: first demonstration of +30dB signal improvement EPFL D. Grogg, A.M. Ionescu, DRC 2008.
Double Gate switchable/vibrating body FET Experiment D. Grogg, A.M. Ionescu, ESSDERC 2008, Confidential
Conclusion • NEM-FET: true hybrid mechanical-solid-state switch with near-zero point subthreshold swing • attractive for low-Ioff power management switches, capacitor-less memory (D-RAM, S-RAM and NVM with appropriate storage layers) and new analog/RF functionality (in the resonant-gate configuration). • fabrication: compatibility of surface micromachining with CMOS processing. • Voltage scaling below 1-2V: nanogap technology • Size: ~as scalable as MOSFET (anchors needed) • NEMFET does not use mechanical contacts in the path of current flow: long-term reliability comparable to that of capacitive RF MEMS switches (>109 cycles), being limited by oxide charging.
NEM sensing MEMS/NEMS application roadmap
MEMS/NEMS application roadmap • NEMS àBeyond CMOS = low power nano-switch • àMore than Moore = new functionality • Key role of NEMS for power savings and new functionality: future hybrid NEMS-CMOS • Future role of true hybrid NEM-FET devices: • abrupt switch, memory, resonator, sensing • Challenges for hybrid NEM-FET: • additional process control of nanoscale air-gap, thickness and uniformity of suspended structures, control and uniformity of mechanical properties • fabrication: top-down & bottom-up (Si, CNTs) • wafer-level packaging and reliability • thermal drift
Acknowledgments EPFL:FP7 IST projects MIMOSA, MINAMI and NANO-RF Stanford: DARPA, FCRP C2S2, NSF Roger T. Howe, David Elata, J Provine, Roozbeh Parsa, Kyeongran Yoo, Soogine Chong UC Berkeley: DARPA, FCRP C2S2 Hei Kam