290 likes | 312 Views
Mini-course bifurcation theory. Part two: equilibria of 2D systems. George van Voorn. Two-dimensional systems. Consider 2D ODE. α = bifurcation parameter(s). Model analysis. Different kinds of analysis for 2D ODE systems Equilibria: determine type(s) Transient behaviour
E N D
Mini-course bifurcation theory Part two: equilibria of 2D systems George van Voorn
Two-dimensional systems • Consider 2D ODE α = bifurcation parameter(s)
Model analysis • Different kinds of analysis for 2D ODE systems • Equilibria: determine type(s) • Transient behaviour • Long term behaviour
Equilibria: types • Different types of equilibria • Stability • Stable • Unstable • Saddle • Convergence type • Node • Spiral (or focus)
Equilibria: nodes Ws Wu Stable node Unstable node Node has two (un)stable manifolds
Equilibria: saddle Wu Ws Saddle point Saddle has one stable & one unstable manifold
Equilibria: foci Ws Wu Stable spiral Unstable spiral Spiral has one (un)stable (complex) manifold
Equilibria: determination • How do we determine the type of equilibrium? • Linearisation of point • Eigenfunction
Jacobian matrix • Linearisation of equilibrium in more than one dimension partial derivatives
Eigenfunction • Determine eigenvalues (λ) and eigenvectors (v) from Jacobian Of course there are two solutions for a 2D system
Eigenfunction If λ < 0 stable, λ > 0 unstable If twoλ complex pair spiral
Determinant & trace • Alternative in 2D to determine equilibrium type (much less computation)
Diagram Saddle Stable node Stable spiral Unstable spiral Unstable node
Example • 2D ODE Rosenzweig-MacArthur (1963) R = intrinsic growth rate K = carrying capacity A/B = searching and handling C = yield D = death rate
Example • System equilibria • E1 (0,0) • E2 (K,0) • E3 Non-trivial
Example • Jacobian matrix • Substitute the point of interest, e.g. an equilibrium • Determine det(J) and tr(J)
Example Substitution E2 Result: stable node
Example Substitution E3 Result: stable node, near spiral
Example Substitution E3 Result: unstable spiral
One parameter diagram 1 2 3 • Stable node • Stable node/focus • Unstable focus
Isoclines • Isoclines: one equation equal to zero • Give information on system dynamics • Example: RM model
Manifolds & orbits • Manifolds: orbits starting like eigenvectors • Give other information on system dynamics • E.g. discrimination spiral or periodic solution (not possible with isoclines) • Separatrices (unstable manifolds)
Manifolds & orbits y E3 Ws Wu E1 E2 x D < 0 stable manifold E1 is separatrix
Continue • In part three: • Bifurcations in 2D ODE systems • Global bifurcations • In part four: • Demonstration: 3D RM model • Chaos