240 likes | 300 Views
Clustering Categorical Data. Pasi Fränti. 18.2.2016. K-means clustering. Definitions and data. Set of N data points:. X ={ x 1 , x 2 , …, x N }. Partition of the data:. P ={ p 1 , p 2 , …, p M },. Set of M cluster prototypes (centroids):. C ={ c 1 , c 2 , …, c M },.
E N D
Clustering Categorical Data Pasi Fränti 18.2.2016
Definitions and data Set of N data points: X={x1, x2, …, xN} Partition of the data: P={p1, p2, …, pM}, Set of M cluster prototypes (centroids): C={c1, c2, …, cM},
Distance and cost function Euclidean distance of data vectors: Mean square error:
Clustering result as partition Partition of data Cluster prototypes Illustrated by Voronoi diagram Illustrated by Convex hulls
Duality of partition and centroids Partition of data Cluster prototypes Partition by nearestprototype mapping Centroids as prototypes
Categorical clustering Three attributes
Categorical clustering Sample 2-d data: color and shape Model A Model B Model C
Hamming Distance(Binary and categorical data) • Number of different attribute values. • Distance of (1011101) and (1001001) is 2. • Distance (2143896) and (2233796) • Distance between (toned) and (roses) is 3. 100->011 has distance 3 (red path) 010->111 has distance 2 (blue path) 3-bit binary cube
K-means variants Histogram-based methods: Methods: • k-modes • k-medoids • k-distributions • k-histograms • k-populations • k-representatives
Entropy-based cost functions Category utility: Entropy of data set: Entropies of the clusters relative to the data:
K-medoids clusteringPrototype of cluster Vector with minimal total distance to every other 3 Medoid: 2 2 A C E B C F B D G B C F 2+3=5 2+2=4 2+3=5
K-histograms D 2/3 F 1/3
Literature Modified k-modes + k-histograms:M. Ng, M.J. Li, J. Z. Huang and Z. He, On the Impact of Dissimilarity Measure in k-Modes Clustering Algorithm, IEEE Trans. on Pattern Analysis and Machine Intelligence, 29 (3), 503-507, March, 2007. ACE:K. Chen and L. Liu, The “Best k'' for entropy-based categorical dataclustering, Int. Conf. on Scientific and Statistical Database Management (SSDBM'2005), pp. 253-262, Berkeley, USA, 2005. ROCK:S. Guha, R. Rastogi and K. Shim, “Rock: A robust clustering algorithm for categorical attributes”, Information Systems, Vol. 25, No. 5, pp. 345-366, 200x. K-medoids:L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis, John Wiley Sons, New York, 1990. K-modes:Z. Huang, Extensions to k-means algorithm for clustering large data sets with categorical values, Data mining knowledge discovery, Vol. 2, No. 3, pp. 283-304, 1998. K-distributions:Z. Cai, D. Wang and L. Jiang, K-Distributions: A New Algorithm for Clustering Categorical Data, Int. Conf. on Intelligent Computing (ICIC 2007), pp. 436-443, Qingdao, China, 2007. K-histograms:Zengyou He, Xiaofei Xu, Shengchun Deng and Bin Dong, K-Histograms: An Efficient Clustering Algorithm for Categorical Dataset, CoRR, abs/cs/0509033, http://arxiv.org/abs/cs/0509033, 2005.