260 likes | 275 Views
Discover the Institute of Modern Physics (IMP) and the Electron-Ion Collider (EIC@HIAF) project in Lanzhou, China. Learn about the unique advantages, kinematic coverage, and golden measurements of EIC@HIAF for deep exclusive scattering and nucleon structure research. Engage in discussions on hadron physics at EIC@HIAF.
E N D
An Electron Ion Collider at HIAF Xurong Chen for the EIC@HIAF study group The Institute of Modern Physics, CAS, Lanzhou, China The 5th Workshop on Hadron Physics in China and Opportunities in USA Huangshan, July 3, 2013
Outline • Introduction to IMP • EIC@HIAF • Physics and Simulations • Conclusions
The Institute of Modern Physics (IMP) • The institute of Modern Physics(IMP) was founded in 1957. It is affiliated with Chinese Academy of Science (CAS) • The national Laboratory for the heavy Ion Research Facility in Lanzhou was established at the IMP in 1991. • IMP mainly focuses on basic research in heavy ion physics and its related interdisciplinary science • There are about 800 scientists and engineers, including two academicians of CAS and 60 full professors • IMP is one of the well-known research centers of low-and intermediate energy heavy ion physics in the world.
Main EIC plans in the world EIC@HIAF LHC LHeC RHIC eRHIC CEBAF MEIC/EIC HERA FAIR ENC
The Layout of HIAF Complex 2.4GeV ER eLinac-Ring 2.4 GeV (e) 3.0×1013 ICR-43 12.0 GeV (p) 4.1×1012 • Key Characteristics: • High energy & High intensity & Pulse • Cooled intense primary beam & RIBs • Beam compression • Super long period slow extraction • Multi-operation modes CBR-13/12 3.9ms/turn, 173turns, 680 ms (A=400,ε=2.3, f=1.5) ABR-20/18 3.0 GeV (p) 2.8×1012 SLinac 0.34 GeV/u (238U34+) 2.7×1011 50 MeV/u (p) 17 MeV/u (U34+) 1 pmA 1 Hz, 680 μs 40 pmA 5 Hz, 430 μs 6.2ms/turn, 70turns, 430 ms (A=400,ε=5.7, f=1.5) For more details, see Jiancheng Yang’s talk
Lepton-Nucleon Facilities EIC@HIAF: e(2.4 GeV) +p(12 GeV), both polarized, L = 4 x 1032cm2/s HIAF
EIC@HIAF Kinematic Coverage Comparison with JLab 12 GeV e(2.4 GeV) +p(12 GeV), both polarized, L = 4 x 1032cm2/s • EIC@HIAF Phase-1: ~2019: 2.4 x12 GeV • Both e and p polarized • Luminosity: 4 x 1032cm2/s • EIC@HIAF Phase-2: ~2030 10 x 100 GeV • EIC@HIAF: • study sea quarks (x > 0.01) • deep exclusive scattering at • Q2 > 5-10 • higher Q2 in valance region
Unified view of nucleon structure • EIC – 3D imaging of nucleon structure: • TMDs – confined motion in a nucleon (semi-inclusive DIS) • GPDs – Spatial imaging of quarks and gluons (exclusive DIS)
The Unique Advantages of EIC@HIAF • The main theme for JLab 12 GeV is the study of the valance quark structure (and confinement) • The main theme for full EIC (eRHIC, ELIC, LHeC…) is to understand the gluons • The energy reach of the EIC@HIAF is higher than JLab 12GeV but lower than the full EIC being considered in US (at about the lower end) • EIC@HIAF phase-1 (3GeV e x 12 GeV p): x is in region[0.01,0.1]. It’s the best region for sea quark study
Spin-Flavor Study at EIC@HIAF • Unique opportunity for Δs • JLab12 GeV energy not high enough to have clean Ds measurements But, EIC@HIAF, combination of energy and luminosity: • By semi-inclusive DIS, in particular, for Kaons , will help to identify strange quark helicity
TMD Study at EIC@HIAF • Unique opportunity for TMD in “sea quark” region • reach x ~ 0.01 (JLab12 mainly valence quark region, reach x ~ 0.1) • Semi-inclusive DIS, for charged hadrons, to measure TMD sea quark distributions • Charm-pair production to measure TMD gluon distributions • Significant increase in Q2 range for valence region energy reach Q2 ~40 GeV2 at x ~ 0.4 (JLab12, Q2 < 10)
GPD Study at EIC@HIAF • Significant increase in range for DVCS • Extend the kinematics covered by JLab • Unique opportunity for Deeply virtual meson production (DVMP) (pion/Kaon) • flavor decomposition needs DVMP energy reach Q2 > 5-10 GeV2 • JLab12 energy not high enough to have clean light meson deep exclusive process • which is the case for EIC@HIAF design
Hadron Physics at EIC@HIAF • Many aspects of hadron’s partonic structure can be naturally addressed by EIC, but, not other machines: e+ e-, pp, pA, AA • There are a lot to be done in the meson (including exotic meson) and X-Y-Z particles, where EIC might have an important role to play
Golden Measurements at EIC@HIAF • To measure strange quark polarization in kaon Semi-inclusive DIS production • TMD Sivers function in Semi-inclusive DIS, Q2 evolution, etc. • DVCS/DVMP, to measure quark orbital angular momentum • Quark propagation in medium to compare with heavy ion collisions
EIC@HIAF meeting The 2nd International workshop on QCD and Hadron Physics, March 30-April 3, 2013, Lanzhou QCD and hadron physics EIC Physics EIC@HIAF
EIC@HIAF meeting • The four experiments were re-affirmed as good candidates for golden measurements • Some of the unique advantages of the EIC@HIAF (comparing to fixed target experiments) for SIDIS study were emphasized (Ahbay and Elka), especially the clean separation of the current fragmentation from the target fragmentation (Delta_s, TMDs and hadronization clean measurements) • Adjustability of beam energy is needed for flavor separation of GPD study (which is the case for EIC@HIAF design) • We decided to do simulation and whitepaper at once, and should be done before July 2013
Two More Golden Measurements • Craig Roberts: • Pointed out the importance of higher Q2 EIC@HIAF will provide (comparing to JLab12), which are essential for clean measurement in the valence quark region • Suggests: (5) the pion and kaon structure function measurment, which can be a benchmark experiment to test non-perturbative QCD calculations • Eli:(6): EMC-SRC measurement: which will be a high impact experiment if EIC@HIAF can make precision measurement
Simulation Progress • Xiaodong Jiang's group (Los Alamos) is doing the sea-quark polarization simulation and it has been done • The TMD simulation is done by Haiyan's group (Duke). The plot is being finalized. • The GPD group (Saclay/ODU/JLab) is doing the GPD (DVMP with pi/K) simulation, they are trying to produce results • Paul Reimer (Argonne) is doing the pion structure function simulation. Craig has produced first draft of a write-up
The TMD simulation: Projections for SIDIS Asymmetry π+ By Haiyan’s group EIC@HIAF may reach the same precision with SoLID
Sea Quark Sivers Function • we can clearly see that the EIC will be a powerful facility enabling access to TMDs with unprecedented precision, and particularly in the currently unexplored sea quark region • This precision is not only crucial for the fundamental QCD test of the sign change between the Sivers asymmetries in the DIS and Drell-Yan processes, but also important to investigate the QCD dynamics in the hard processes in SIDIS • Exploration of the sea quark Sivers function will provide, for the first time, the unique information on the spin-orbital correlation in the small-x region
Simulated errors for pi structure function measurement • Simulated errors for DIS events using a 3 GeV electron beam on a 12 GeV proton beam with a luminosity of 5 x 1032 cm−2 s−1 and 106 s of running. A precise result could be obtained on the domain x <= 0.9 By Paul E. Reimer
Our Future Plan • Physics Simulations (will be done very soon) • Detector simulations • Whitepaper writing • Jianwei Qiu, Feng Yuan, etc., are working hard on it • The first draft will come up very soon • Chinese version is needed • It really needs international community efforts on simulations and whitepaper writing !
Job Opportunities • Now we have several immediate openings for postdoctoral researchers/guest Professors to work on EIC related physics (such as QCD, nucleon structure, small x physics, hadron physics, etc.) • For further information you may refer to the following links: • http://inspirehep.net/record/1189703 • http://inspirehep.net/record/1206133 • http://inspirehep.net/record/1210538 • If one needs further information please contact us: • zhpm@impcas.ac.cn (theory) • xchen@impcas.ac.cn (experiment) Welcome!
Summary • EIC@HIAF opens up a new window to study/understand nucleon structure, especially the sea quark • Anthony Thomas: This proposal at IMP is extremely exciting and to have this working in 6 years would be wonderful. It is a machine ideally suited to a number of important problems. • Craig Roberts: • Providing the understanding of hadrons, verifying QCD, perhaps, or replacing it, will be one of Nuclear Physics’ greatest contributions to science. • It is in a position to make concrete predictions (Predictions for GPDs and TMDs will follow).Such predictions represent consequences of statements about confinement and DCSB (Dynamical Chiral Symmetry Breaking) • If China-EIC is in a position to test those predictions, then we can get to the heart of the most interesting problem in fundamental physics today