90 likes | 145 Views
Explore Johannes Hudde’s rules for polynomials applied in various fields. Learn how to identify local extremes and double roots in equations. Gain insights into coefficient reduction and practical applications in finance and army strategy.
E N D
Hudde’s Two Rulesfor Polynomials Pre-May Seminar March 14, 2011
Johannes Hudde (1628-1704) • Amsterdam Burgomaster: 1672-1703
Johannes Hudde (1628-1704) • Amsterdam Burgomaster: 1672-1703 • Epistolasecunda, de maximis et minimis 1658
Johannes Hudde (1628-1704) • Amsterdam Burgomaster: 1672-1703 • Epistolasecunda, de maximis et minimis 1658 • De reductioneaequationum: Coefficients
Johannes Hudde (1628-1704) • Amsterdam Burgomaster: 1672-1703 • Epistolasecunda, de maximis et minimis 1658 • De reductioneaequationum: Coefficients • Slows French Army
Johannes Hudde (1628-1704) • Amsterdam Burgomaster: 1672-1703 • Epistolasecunda, de maximis et minimis 1658 • De reductioneaequationum: Coefficients • Slows French Army • Pricing Annuities
Hudde’s Two Rules • Rule 1: If the polynomial an xn + an-1 xn-1 +…+ a1 x + a0 has a local max or local min @ x=x0, then x=x0 is a root of the equation nanxn + (n-1)an-1 xn-1 +…+ 2a2x2 + a1 x=0.
Hudde’s Two Rules • Rule 2: If the polynomial equation an xn + an-1 xn-1 +…+ a1 x + a0 =0 has a double root @ x=x0, and if b0 , b1 ,…, bn are numbers in arithmetic progression, then x=x0 is a root of the poly equation an b0 x n + an-1 b1 xn-1 +…+ a1bn-1 x + a0 bn=0.