1 / 22

Discrete Optimization Lecture 5 – Part 1

This lecture covers submodular functions, including unary submodular functions, pairwise submodular functions, and submodular energy functions. It discusses properties and conditions for submodularity and provides proofs.

jnader
Download Presentation

Discrete Optimization Lecture 5 – Part 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Discrete OptimizationLecture 5 – Part 1 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online http://mpawankumar.info

  2. Outline • Submodular Functions • Unary Submodular Functions • Pairwise Submodular Functions • Submodular Energy Function

  3. Submodular Function Set S Function f over power set of S f(T) + f(U) ≥ f(T ∪ U) + f(T ∩ U) for all T, U ⊆ S

  4. Supermodular Function Set S Function f over power set of S f(T) + f(U) ≤ f(T ∪ U) + f(T ∩ U) for all T, U ⊆ S

  5. Modular Function Set S Function f over power set of S f(T) + f(U) = f(T ∪ U) + f(T ∩ U) for all T, U ⊆ S

  6. Modular Function f(T) = ∑s ∈T w(s) + K Is f modular? YES All modular functions have above form? YES Prove at home

  7. Diminishing Returns Define df(s|T) = f(T ∪{s}) - f(T) Gain by adding s to T If f is submodular, df(s|T)is non-increasing

  8. Diminishing Returns Define df(s|T) = f(T ∪{s}) - f(T) Gain by adding s to T f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪{s,t}) for all U⊆ S and distinct s,t ∈ S\U Necessary condition for submodularity Proof?

  9. Diminishing Returns Define df(s|T) = f(T ∪{s}) - f(T) Gain by adding s to T f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪{s,t}) for all U⊆ S and distinct s,t ∈ S\U Sufficient condition for submodularity Proof?

  10. Proof Sketch Consider T, U ⊆ S We have to prove f(T) + f(U) ≥ f(T ∪ U) + f(T ∩ U) We will use mathematical induction on |TΔU|

  11. Proof Sketch |TΔU| = 1 Either U ⊆ T or T ⊆ U Let T ⊆ U T ∪ U = U and T ∩ U = T Proof follows trivially

  12. Proof Sketch |TΔU| = 2 If U ⊆ T or T ⊆ U, then proof follows trivially If not, then simply use the condition f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪{s,t}) for all U⊆ S and distinct s,t ∈ S\U

  13. Proof Sketch |TΔU| ≥ 3 Let t ∈ T\U Assume, wlog, |T \ U| ≥ 2 |T Δ ((T \{t}) ∪ U)| < |T Δ U| Why? f(T∪U) - f(T) ≤ f((T\{t}) ∪ U) - f(T\{t}) Induction assumption

  14. Proof Sketch |TΔU| ≥ 3 Let t ∈ T\U Assume, wlog, |T \ U| ≥ 2 |(T\{t}) Δ U| < |T Δ U| Why? f((T\{t}) ∪ U) - f(T\{t}) ≤ f(U) - f(T ∩ U) Induction assumption

  15. Proof Sketch |TΔU| ≥ 3 f(T∪U) - f(T) ≤ f(U) - f(T ∩ U) Hence Proved

  16. Outline • Submodular Functions • Unary Submodular Functions • Pairwise Submodular Functions • Submodular Energy Function

  17. Unary SubmodularFunction Set S = {1, 2, …, n} Consider a ∈S Function fa over power set of {a} fa(null set) = θa(0) fa({a}) = θa(1) Unary potentials Always When is fasubmodular?

  18. Outline • Submodular Functions • Unary Submodular Functions • Pairwise Submodular Functions • Submodular Energy Function

  19. Pairwise SubmodularFunction Set S = {1, 2, …, n} Consider a,b ∈S Function fab over power set of {a,b} fab(null set) = θab(0,0) fab({a}) = θab(1,0) fab({b}) = θab(0,1) fab({a,b}) = θab(1,1) Pairwise potentials When is fabsubmodular?

  20. Pairwise SubmodularFunction Set S = {1, 2, …, n} Consider a,b ∈S Function fab over power set of {a,b} fab(null set) = θab(0,0) fab({a}) = θab(1,0) fab({b}) = θab(0,1) fab({a,b}) = θab(1,1) Pairwise potentials θab(0,0) + θab(1,1) ≤ θab(0,1)+ θab(1,0)

  21. Outline • Submodular Functions • Unary Submodular Functions • Pairwise Submodular Functions • Submodular Energy Function

  22. Energy Function Consider x ∈{0,1}n Set S = {1, 2, …, n} Energy function E(x) minx E(x) ∑aθa(xa) + ∑(a,b)θab(xa,xb) Assume θab(0,0) + θab(1,1) ≤ θab(0,1)+ θab(1,0) Submodular Energy Function

More Related