380 likes | 514 Views
Elementary Partitions of Line Segments in the Plane. Point set triangulations. Point set triangulations. Delaunay triangulations. Duality. Legal edge property. Legal edge property. The Delaunay triangulation is the unique triangulation without illegal edge.
E N D
Elementary Partitions of Line Segments in the Plane Mathieu Brévilliers, Laboratoire MIA, UHA
Point set triangulations Mathieu Brévilliers, Laboratoire MIA, UHA
Point set triangulations Mathieu Brévilliers, Laboratoire MIA, UHA
Delaunay triangulations Mathieu Brévilliers, Laboratoire MIA, UHA
Duality Mathieu Brévilliers, Laboratoire MIA, UHA
Legal edge property Mathieu Brévilliers, Laboratoire MIA, UHA
Legal edge property • The Delaunay triangulation is the unique triangulation without illegal edge. O(n) checker for Delaunay triangulations Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary partitions Mathieu Brévilliers, Laboratoire MIA, UHA
Shape of edges Mathieu Brévilliers, Laboratoire MIA, UHA
Shape of edges Mathieu Brévilliers, Laboratoire MIA, UHA
Shape of edges Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Topology Mathieu Brévilliers, Laboratoire MIA, UHA
Numbers of edges and faces • 3n – n’ – 3 edges • 2n – n’ – 2 faces • n : number of sites • n’ : number of sides of the CH that are not sites Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary Delaunay partition Mathieu Brévilliers, Laboratoire MIA, UHA
Elementary Delaunay partition Mathieu Brévilliers, Laboratoire MIA, UHA
Duality Mathieu Brévilliers, Laboratoire MIA, UHA
Legal edge property Mathieu Brévilliers, Laboratoire MIA, UHA
Legal edge property Legal Illegal Mathieu Brévilliers, Laboratoire MIA, UHA
Legal edge property • The elementary Delaunay partition is the unique elementary partition without illegal edge. Mathieu Brévilliers, Laboratoire MIA, UHA
Checker for Delaunay topology Topology Geometry with faces in Delaunay positions Is it an elementary partition ? Mathieu Brévilliers, Laboratoire MIA, UHA
d a c b a d b c Checker for Delaunay topology Mathieu Brévilliers, Laboratoire MIA, UHA
Checker for Delaunay topology 1. For each edge, the test runs in constant time 2. O(n) edges in an elementary partition Linear algorithm Mathieu Brévilliers, Laboratoire MIA, UHA
Future works • Flip algorithm • Equiangularity for elementary Delaunay partitions • More general set of sites • Higher dimensions Mathieu Brévilliers, Laboratoire MIA, UHA
Thank you! Mathieu Brévilliers, Laboratoire MIA, UHA