540 likes | 1.3k Views
Spin dynamics and the Quantum Zeno Effect. Fresco in the Library of El Escorial, Madrid. Carsten Klempt, Luis Santos, Augusto Smerzi , Wolfgang Ertmer. Carsten Klempt Leibniz Universität Hannover. Content. Zeno’s paradoxes The quantum Zeno effect
E N D
Spin dynamics and the Quantum Zeno Effect Fresco in the Library of El Escorial, Madrid. Carsten Klempt, Luis Santos, Augusto Smerzi, Wolfgang Ertmer Carsten Klempt Leibniz Universität Hannover
Content Zeno’s paradoxes The quantum Zeno effect Spin dynamics and the quantum Zeno effect Entanglement and the quantum Zeno effect
Content Zeno’s paradoxes The quantum Zeno effect Spin dynamics and the quantum Zeno effect Entanglement and the quantum Zeno effect
Zeno of Elea 490 v. Chr. - 430 v. Chr.
The paradoxes of Zeno of Elea • "not less than forty arguments revealing contradictions"–Proclus • Onlynineareknown • First examplesofreductio ad absurdum • Paradoxes ofmotion: • The dichotomy paradox • Achilles andthetortoise • The arrow paradox
The dichotomy paradox That which is in locomotion must arrive at the half-way stage before it arrives at the goal. –Aristotle
The arrow paradox If everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless. –Aristotle
Content Zeno’s paradoxes The quantum Zeno effect Spin dynamics and the quantum Zeno effect Entanglement and the quantum Zeno effect
Zeno with a quantumarrow Zeno: The spin cannot rotate in the Bloch sphere
The quantum Zeno setup Zeno: divide time in msmall intervals and follow the dynamics at each time step. (total time : t = m τ = π )
The quantum Zeno effect Zeno: check at each time step if the spin really rotated: projective measurements The projective measurement has eigenvalues “yes”, “no”. The “yes” projects on the subspace with probability Peres, Am. J. Phys. 48, 931 (1980).
Zeno: give a look at the survival probability (the probability that at the final time the spin is still pointing up) The arrow does not rotate if watched !
Level scheme 5P3/2 780 nm F=2 6.8 GHz 5S1/2 F=1 -1 0 +2 mF= -2 +1
Content Zeno’s paradoxes The quantum Zeno effect Spin dynamics and the quantum Zeno effect Entanglement and the quantum Zeno effect
BEC spin dynamics -1 0 1 • Idea: • Spin dynamicsasslowcoherentprocess • Preventspindynamicsby Zeno measurement • Itissufficienttomeasureone ±1 component • The creationoftheotherisblockedbyentanglement
Level scheme 5P3/2 780 nm F=2 6.8 GHz 5S1/2 F=1 ? -1 0 +2 mF= -2 +1
Expectedresult without Zeno measurements with Zeno measurements
Level scheme 5P3/2 6 MHz 780 nm 10-100 kHz F=2 6.8 GHz 10 kHz 5S1/2 F=1 10 Hz
Content Zeno’s paradoxes The quantum Zeno effect Spin dynamics and the quantum Zeno effect Entanglement and the quantum Zeno effect
Zeno dynamicsandentanglement Complicated, extremelyentangled, fragile state Isthestate intact? decoherence unwantedstate
Level scheme 5P3/2 780 nm F=2 6.8 GHz 5S1/2 F=1 -1 0 +2 mF= -2 +1
Two-mode squeezed vacuum N-1 , Φ-1 N+1, Φ+1 σ(N-1 – N+1) = 0 Barnett & Pegg, Phys. Rev. A 42, 6713 (1990). σ(Φ-1– Φ+1) /3
Level scheme 5P3/2 780 nm F=2 6.8 GHz 5S1/2 F=1 -1 0 +2 mF= -2 +1
Rotation angle ↔ Variance ‹Jz›=0 Jz/J +1 Jz2 0 -1 Probability distribution
Level scheme 5P3/2 780 nm F=2 6.8 GHz 5S1/2 F=1 -1 0 +2 mF= -2 +1
Expectedresult • Twin Fock statecanbeprotectedagainstrotation • Zeno measurements must be fast. • Theyarefasterthanfor a classicalstate • Entanglementisdifficult • toprotectby Zeno measurements