530 likes | 543 Views
Harry Kroto's 2004 findings on detection theory, Fermi's Golden Rule, Beer-Lambert Law, and Einstein Coefficients in molecular physics exploration.
E N D
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K Harry Kroto 2004
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K l Io I I I = Ioe- l I = Io (1 - l + …) Io - I = I ~l Harry Kroto 2004
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K l Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K l Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K l Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004
Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K l Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004
Fermi’s Golden Rule x Io I l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004
Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l is the absorption coefficient = (83/3hc)n em2(Nm-Nn)(o-) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① • Square of the transition moment nem2 Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② • Square of the transition moment nem2 • Frequency of the light Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ • Square of the transition moment nem2 • Frequency of the light • Population difference (Nm- Nn) Harry Kroto 2004
= (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ ④ • Square of the transition moment nem2 • Frequency of the light • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004
C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004
Hot gas cloud –the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004
Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004
Einstein Coefficients n Bn<-m m Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m m Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004
Einstein Coefficients n Bn<-m Bn->m An->m m A = 1.2 x 10-37 3n em2 transitions per sec Spontaneous emission lifetime (sec) = 1/A = 1037/3 sec Harry Kroto 2004
(sec) = 1037/3 (cm-1) (Hz) 3 (Hz3) (sec) H (1420 MHz) 21cm 0.05 1.5x109 3x1027 1010 * H2CO rotations 1cm 1 3 x 1010 3x1031 106 CO2 vibrations 10 103 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 2x104 1.5 x 1014 6 x 1044 10-7 H Lyman 100nm 105 3 x 1015 3 x 1046 10-9 Calculations assume e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004
Bohr radius an = aon2 ao = 0.05 nm Harry Kroto 2004
Bohr radius an = aon2 ao = 0.05 nm Calculate a10, a100 and a300 in cm Harry Kroto 2004
Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm) a300 = 0.5x10-3 cm = 0.005 mm Harry Kroto 2004
Nitrosoethane Harry Kroto 2004
What can molecules do Harry Kroto 2004
What can molecules do 2 Harry Kroto 2004
What can molecules do 2 Harry Kroto 2004