1 / 53

Spectroscopic Detection Theory in Molecular Physics

Harry Kroto's 2004 findings on detection theory, Fermi's Golden Rule, Beer-Lambert Law, and Einstein Coefficients in molecular physics exploration.

joannmoore
Download Presentation

Spectroscopic Detection Theory in Molecular Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K Harry Kroto 2004

  2. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) Io - I = I ~l Harry Kroto 2004

  3. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

  4. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

  5. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

  6. Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

  7. Fermi’s Golden Rule x Io I l Harry Kroto 2004

  8. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

  9. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

  10. Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

  11. Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004

  12. Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l  is the absorption coefficient  = (83/3hc)n em2(Nm-Nn)(o-) Harry Kroto 2004

  13.  = (4/3ħc) nem2 (Nm-Nn) (o-) Harry Kroto 2004

  14.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① • Square of the transition moment nem2 Harry Kroto 2004

  15.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② • Square of the transition moment nem2 • Frequency of the light  Harry Kroto 2004

  16.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) Harry Kroto 2004

  17.  = (4/3ħc) nem2 (Nm-Nn) (o-) • ① ② ③ ④ • Square of the transition moment nem2 • Frequency of the light  • Population difference (Nm- Nn) • Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004

  18. C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004

  19. Harry Kroto 2004

  20. Harry Kroto 2004

  21. Harry Kroto 2004

  22. Harry Kroto 2004

  23. Harry Kroto 2004

  24. Harry Kroto 2004

  25. Harry Kroto 2004

  26. Harry Kroto 2004

  27. Hot gas cloud –the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004

  28. Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004

  29. Einstein Coefficients n Bn<-m m Harry Kroto 2004

  30. Einstein Coefficients n Bn<-m Bn->m m Harry Kroto 2004

  31. Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004

  32. Einstein Coefficients n Bn<-m Bn->m An->m m A = 1.2 x 10-37 3n em2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = 1037/3 sec Harry Kroto 2004

  33.  (sec) = 1037/3   (cm-1)  (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 0.05 1.5x109 3x1027 1010 * H2CO rotations 1cm 1 3 x 1010 3x1031 106 CO2 vibrations 10 103 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 2x104 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 105 3 x 1015 3 x 1046 10-9 Calculations assume e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

  34. Harry Kroto 2004

  35. Bohr radius an = aon2 ao = 0.05 nm Harry Kroto 2004

  36. Bohr radius an = aon2 ao = 0.05 nm Calculate a10, a100 and a300 in cm Harry Kroto 2004

  37. Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm) a300 = 0.5x10-3 cm = 0.005 mm Harry Kroto 2004

  38. Harry Kroto 2004

  39. Nitrosoethane Harry Kroto 2004

  40. What can molecules do Harry Kroto 2004

  41. What can molecules do 2 Harry Kroto 2004

  42. What can molecules do 2 Harry Kroto 2004

  43. Harry Kroto 2004

  44. Harry Kroto 2004

  45. Harry Kroto 2004

  46. Harry Kroto 2004

  47. Harry Kroto 2004

  48. Harry Kroto 2004

  49. Harry Kroto 2004

More Related