690 likes | 1.06k Views
Degenerate scale analysis for membrane and plate problems using the meshless method and boundary element method. 研究生:吳清森 指導教授:陳正宗 教授 陳義麟 博士. 國立台灣海洋大學河海工程學系 結構組 碩士班論文口試 日期: 2004/06/16 09:00-10:20. Frame of the thesis. Chapter 1 Introduction. Free term and Jump term.
E N D
Degenerate scale analysis for membrane and plate problems using the meshless method and boundary element method 研究生:吳清森 指導教授:陳正宗 教授 陳義麟 博士 國立台灣海洋大學河海工程學系 結構組 碩士班論文口試 日期: 2004/06/16 09:00-10:20
Frame of the thesis Chapter 1 Introduction Free term and Jump term Degenerate kernel Chapter 5 Free terms for plate problem (Biharmonic problem) Chapter 6 Conclusions and further research Chapte3 BIEM and BEM for degenerate scale problem (Laplace and biharmonic problem) Chapter 2 Green’s function and Poisson integral formula (Laplace problem) Chapter 4 Meshless method for degenerate scale problem (Laplace and biharmonic problem)
Motivation Methods Techniques (1) BIEM, BEM (2) MFS, Trefftz Method • Degenerate kernel • Circulants Statics 1-D case (Euler beam) Membrane (Laplace equation) Plate (biharmonic equation) Degenerate scale problem
Degenerate kernel x s x s O1 R R O1 x O2 O2 x (field point): variable s (source point): fixed r S
Derivation of the Poisson integral formula Methods G. E.: B. C. : Free of image concept Image concept Poisson integral formula Searching the image point Null-field integral equation method Reciprocal radii method Degenerate kernel a Image source Traditional method
Null-field integral equation in conjunction with degenerate kernels Green’s identity Fundamental solution B Boundary densities: specified unknown Degenerate kernel Unknown coefficients
Engineering problem governed by biharmonic equation 1. Plane elasticity: 2.Slow viscous flow (Stokes’ Flow): 3.Solid mechanics (Plate problem):
Problem statement w=constant uniform pressure a B Governing equation: Boundary condition: Splitting method Governing equation: Boundary condition: : deflection of the circular plate : flexure rigidity : uniform distributed load : domain of interest
Boundary integral equations for plate (1) Displacement (2) Slope (3) Normal moment (4) Effective shear force
Operators Slope Normal moment Effective shear force
Kernel functions Fundamental solution: Kernel functions:
Mathematical analysis --- Discrete model formulation: For the clamped circular plate (u and are specified):
Circulant 5 4 3 2 1 a 2N 2N-1 2N-2 2N-3
Eigenvalues of the four matrices kernel kernel kernel kernel
Determinant a Degenerate scale
Degenerate scales for the clamped case Degenerate scales for the simply-supported case 6 options
Degenerate scale formulation formulation a a
Relationship between the Laplace problem and biharmonic problem (a) translation: constant (b) rotation:
Nontrivial modes in FEM and BEM Q4 or Q8 Q4 or Q8
Number of degenerate scales (Laplace problem) Laplace problem: UT formulation: LM formulation: No degenerate scale
Number of degenerate scales (biharmonic problem) formulation formulation formulation
Number of degenerate scales (biharmonic problem) formulation formulation No degenerate scale occurs formulation
Illustrative example (JFM, Mill 1977) a We adopt the null-field integral equation in conjunction with degenerate kernel to derive the analytic solution. M=20 M=50 Exact solution :
On the equivalence of the Trefftz method and MFS for Laplace and biharmonic equations
r s u(x) u(x) D D Trefftz method and MFS is the number of complete functions is the number of source points in the MFS
Statement for Laplace problem D D B B Two-dimensional Laplace problem with a circular domain: B.C. : G.E. : Exterior : Interior : Analytical solution:
Derivation of unknown coefficients(Trefftz method) T-complete set functions : Interior: Exterior: Fieldsolution: Interior : Exterior : By matching the boundary condition at Interior problem: Exterior problem:
Derivation of unknown coefficients(MFS) Degenerate kernel : Fieldsolution: Interior : Exterior : Exterior problem: Interior problem:
Relationship between the two methods By setting = = Trefftz method MFS Trefftz MFS Interior: Exterior:
Matrix ill-posed problem Degenerate scale problem ill-posed problem ? Degenerate scale problem
Circulants a Exterior: R=1 fail Nonunique problem(a=1) R fail a=1 where Interior: Degenerate scale problem(R=1)
Numerical Examples Y y a X x D B B a D
Trefftz method and MFS for biharmonic equation Trefftz method: Field solution : T-complete functions: MFS: Field solution : Analytical solution:
Relationship between the Trefftz method and MFS Mapping matrix [K] Coefficients of the MFS Coefficients of the Trefftz method
Diagonal matrix TR Existence of the degenerate scales O. K.! Nonuniqueness (in numerical aspect) Degenerate scale problem
The occurrence of the degenerate scales using the MFS Degenerate scale problem Mathematics: rank-deficiency problem (nonuniqueness problem) a Numerical failure Special size: : position of the source points
On the complete set of the Trefftz method and the MFS using the degenerate kernel m=1 m=1 m=0 m=0 m=2, 3….. m=2, 3….. T-complete functions of the Trefftz method: Degenerate kernel of the MFS:
Free terms for the biharmonic equation using the dual boundary integral equation