1 / 47

GOMS Analysis & Automating Usability Assessment

GOMS Analysis & Automating Usability Assessment. Melody Y. Ivory SIMS 213, UI Design & Development March 19, 2002. Why Automated Usability Assessment Methods?. GOMS Analysis Outline. GOMS at a glance Model Human Processor Original GOMS (CMN-GOMS) Variants of GOMS GOMS in practice

johana
Download Presentation

GOMS Analysis & Automating Usability Assessment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GOMS Analysis & Automating Usability Assessment Melody Y. Ivory SIMS 213, UI Design & Development March 19, 2002

  2. Why Automated Usability Assessment Methods?

  3. GOMS Analysis Outline • GOMS at a glance • Model Human Processor • Original GOMS (CMN-GOMS) • Variants of GOMS • GOMS in practice • Summary

  4. GOMS at a glance • Proposed by Card, Moran & Newell in 1983 • apply psychology to CS • employ user model (MHP) to predict performance of tasks in UI • task completion time, short-term memory requirements • applicable to • user interface design and evaluation • training and documentation • example of • automating usability assessment

  5. Model Human Processor (MHP) • Card, Moran & Newell (1983) • most influential model of user interaction • used in GOMS analysis • 3 interacting subsystems • cognitive, perceptual & motor • each with processor & memory • described by parameters • e.g., capacity, cycle time • serial & parallel processing Adapted from slide by Dan Glaser

  6. MHP (continued) • Card, Moran & Newell (1983) • principles of operation • subsystem behavior under certain conditions • e.g., Fitts’s Law, Power Law of Practice • ten principles

  7. MHP Subsystems • Perceptual processor • sensory input (audio & visual) • code info symbolically • output into audio & visual image storage (WM buffers)

  8. MHP Subsystems • Cognitive processor • input from sensory buffers • access LTM to determine response • previously stored info • output response into WM

  9. MHP Subsystems • Motor processor • input response from WM • carry out response

  10. MHP Subsystem Interactions • Input/output • Processing • serial action • pressing key in response to light • parallel perception • driving, reading signs & hearing

  11. MHP Parameters • Based on empirical data • word processing in the ‘70s • Processors have • cycle time () • Memories have • storage capacity () • decay time of an item () • info code type () • physical, acoustic, visual & semantic

  12. VIS = 17 [7-17] letters VIS = 200 [70-1000] msec • VIS = Physical p = 100 [50-200] msec Perceptual Subsystem Parameters • Processor • cycle time () = 100 msec • Visual Image Store • storage capacity () = 17 letters • decay time of an item () = 200 msec • info code type () = physical • physical properties of visual stimulus • e.g., intensity, color, curvature, length • Auditory Image Store • similar parameters

  13. One Principle of Operation • Power Law of Practice • task time on the nth trial follows a power law • Tn = T1 n-a, where a = .4 • i.e., you get faster the more times you do it! • applies to skilled behavior (perceptual & motor) • does not apply to knowledge acquisition or quality

  14. Original GOMS (CMN-GOMS) • Card, Moran & Newell (1983) • Engineering model of user interaction • task analysis (“how to” knowledge) • Goals - user’s intentions (tasks) • e.g., delete a file, edit text, assist a customer • Operators - actions to complete task • cognitive, perceptual & motor (MHP) • low-level (e.g., move the mouse to menu)

  15. CMN-GOMS • Engineering model of user interaction (continued) • task analysis (“how to” knowledge) • Methods - sequences of actions (operators) • based on error-free expert • may be multiple methods for accomplishing same goal • e.g., shortcut key or menu selection • Selections - rules for choosing appropriate method • method predicted based on context • explicit task structure • hierarchy of goals & sub-goals

  16. Text-Editing Example (CMN-GOMS)

  17. CMN-GOMS Analysis • Analysis of explicit task structure • add parameters for operators • approximations (MHP) or empirical data • single value or parameterized estimate • predict user performance • execution time (count statements in task structure) • short-term memory requirements (stacking depth of task structure) • benefits • apply before implementation (comparing alternative designs) • apply before usability testing (reduce costs)

  18. Limitations of CMN-GOMS • No directions for task analysis • granularity (start & stop) • Serial instead of parallel perceptual processing • contrary to MHP • Only one active goal • Error-free expert performance • no problem solving or evaluation • Norman’s Human Action Cycle

  19. Norman’s Human Action Cycle (1988) Intention to act Sequence of actions Execution of sequence of actions Evaluation of interpretations Interpreting the perception Perceiving the state of the world GOMS The World

  20. Variants of GOMS • Keystroke-Level Model (KLM) • simpler than CMN-GOMS • six keystroke-level primitive operators • K - press a key or button • P - point with a mouse • H - home hands • D - draw a line segment • M - mentally prepare to do an action • R - system response time • no selections • five heuristic rules (mental operators) • still one goal activation

  21. Text-Editing Example (KLM)

  22. Variants of GOMS • Natural GOMS Language (NGOMSL) • more rigorous than CMN-GOMS • uses cognitive complexity theory (CCT) • user and system models • mapping between user’s goals & system model • user style rules (novice support) • task-analysis methodology • learning time predictions • flatten CMN-GOMS goal hierarchy • high-level notation (proceduralized actions) v.s. low-level operators • still one goal activation

  23. Text-Editing Example (NGOMSL)

  24. Variants of GOMS • Cognitive-Perceptual-Motor GOMS (CPM-GOMS) • activation of several goals • uses schedule chart (PERT chart) to represent operators & dependencies • critical path method for predictions • no selections

  25. Text-Editing Example (CPM-GOMS)

  26. GOMS in Practice • Mouse-driven text editor (KLM) • CAD system (KLM) • Television control system (NGOMSL) • Minimalist documentation (NGOMSL) • Telephone assistance operator workstation (CMP-GOMS) • saved about $2 million a year

  27. Activity • GOMS analysis of using a search engine • Search for “free food”, explore 2 retrieved pages and find what you are looking for

  28. Summary • GOMS in general • “The analysis of knowledge of how to do a task in terms of the components of goals, operators, methods & selection rules.” (John & Kieras 94) • CMN-GOMS, KLM, NGOMSL, CPM-GOMS • Analysis entails • task-analysis • parameterization of operators • predictions • execution time, learning time (NGOMSL), short-term memory requirements • Application to other types of interfaces (e.g., Web or information retrieval) • Limitations?

  29. Automating Usability Assessment Outline • Automated Usability Assessment? • Characterizing Automated Methods • Automated Assessment Methods • Summary

  30. Automated Usability Assessment? • What does it mean to automate assessment? • How could this be done? • What does it require?

  31. Characterizing Automated Methods: Method Classes • Testing • an evaluator observes users interacting with an interface (i.e., completing tasks) to determine usability problems • Inspection • an evaluator uses a set of criteria or heuristics to identify potential usability problems in an interface • Inquiry • users provide feedback on an interface via interviews, surveys, etc.

  32. Characterizing Automated Methods: Method Classes • Analytical Modeling • an evaluator employs user and interface models to generate usability predictions • GOMS is one example • Simulation • an evaluator employs user and interface models to mimic a user interacting with an interface and report the results of this interaction (e.g., simulated activities, errors and other quantitative measures)

  33. Characterizing Automated Methods: Automation Types • None • no level of automation supported (i.e.,evaluator performs all aspects of the evaluation method) • Capture • software automatically records usability data (e.g., logging interface usage) • Analysis • software automatically identifies potential usability problems • Critique • software automates analysis and suggests improvements

  34. Characterizing Automated Methods: Effort Levels • Minimal Effort • does not require interface usage or modeling • Model Development (M) • requires the evaluator to develop a UI model and/or a user model in order to employ the method • Informal Use (I) • requires completion of freely chosen tasks (i.e., unconstrained use by a user or evaluator) • Formal Use (F) • requires completion of specially selected tasks (i.e., constrained use by a user or evaluator)

  35. Automated Assessment Methods

  36. Automated Assessment Methods:Generating Usage Data • Simulation – Automated Capture • Mimic user and record activities for subsequent analysis • Genetic Algorithm Modeling • Script interacts with running interface (Motif-based UI) • Deviation points in script  behavior determined by genetic algorithm • Mimic novice user learning by exploration • Inexpensively generate a large number of usage traces • Find weak spots, failures, usability problems, etc. • Requires manual evaluation of trace execution

  37. Automated Assessment Methods:Generating Usage Data • Information Scent Modeling (Bloodhound, CoLiDeS) • Mimic users navigating a Web site and record paths • Web site model – linking structure, usage data, and content similarity • Considers information scent (common keywords between user goals and link text) in choosing links • Percentage of agents follow higher- and lower-scent links • Does not consider impact of page elements, such as images, reading complexity, etc. • Stopping criteria • Reach target pages or some threshold (e.g., maximum navigation time) • Requires manual evaluation of navigation paths • Log file visualization tool (Dome-Tree Visualization) CoLiDeS

  38. Automated Assessment Methods:Detecting Guideline Conformance • Inspection – Automated Analysis • Cannot automatically detect conformance for all guidelines • One study [Farenc et al.99]: 78% best case, 44% worst case • Quantitative Screen Measures • Size of screen elements, alignment, balance, etc. • Possibly generate initial layouts (AIDE) • Interface Consistency (Sherlock) • Same widget placement and terminology (Visual Basic UIs) • Studies showed 10-25% speedup for consistent UIs

  39. Automated Assessment Methods:Detecting Guideline Conformance • Quantitative Web Measures • Words, links, graphics, page breadth & depth, etc. (Rating Game, HyperAT, WebTango) • Most techniques not empirically-validated • WebTANGO uses empirical data & expert ratings to develop prediction models • HTML Analysis (WebSAT) • All images have alt tags, one outgoing link/page, download speed, etc.

  40. Automated Assessment Methods:Detecting Guideline Conformance • Web Scanning Path (Design Advisor) • Determine how users will scan a page based on attentional effects of elements • motion, size, images, color, text style, and position • Derived from studies of multimedia presentations vs. Web designs

  41. Automated Assessment Methods:Suggesting Improvements • Inspection – Automated Critique • Rule-based critique systems • Typically done within a user interface management system • Very limited application • X Window UIs (KRI/AG), control systems (SYNOP), space systems (CHIMES) • Object-based critique systems (Ergoval & WebEval) • Apply guidelines relevant to each graphical object • Widely applicable to Windows UIs • HTML Critique (Bobby, Lift) • Syntax, validation, accessibility (Bobby), and others • Embed into popular authoring tool (Lift & Macromedia) • Although useful, not empirically validated

  42. Automated Assessment Methods:Modeling User Performance • Analytical Modeling – Automated Analysis • Predict user behavior, mainly execution time • No methods for Web interfaces • GOMS Analysis (previously discussed) • Generate predictions for GOMS models (CATHCI, QGOMS) • Generate model and predictions (USAGE, CRITIQUE) • UIs developed within user interface development environment

  43. Automated Assessment Methods:Modeling User Performance • Cognitive Task Analysis • Input interface parameters to an underlying theoretical model (expert system) • Do not construct new model for each task • Generate predictions based on parameters as well as theoretical basis for predictions • Similar to cognitive walkthrough (supportive evaluation) • Programmable User Models • Cross between GOMS and CTA analyses • Program UI on a psychologically-constrained architecture • Constraint violations suggest usability problems • Generate quantitative predictions

  44. Automated Assessment Methods:Simulating User Behavior • Simulation – Automated Analysis • Petri Net Modeling (AMME) • Construct petri net from logged interface usage • Simulates problem solving process (learning, decisions, and task completion) • Outputs measure of behavior complexity • Information Processor Modeling (ACT-R, SOAR, CCT,…) • Methods employ sophisticated cognitive architecture with varying features • Modeled tasks and components, predictions, etc.

  45. Automated Assessment Methods:Simulating User Behavior • Web Site Navigation (WebCriteria) • Claimed to be similar to GOMS Analysis • Constructs model of site and predicts navigation time for a specified path • Based on idealized Web user (Max) • Navigation time only for shortest path between endpoints • Does not consider impact of page elements (e.g., colors,reading complexity, etc.) • Reports on page freshness and composition of pages (text, image, applets, etc.) • Supports only a small fraction of analysis possible with guideline review approaches • Pirolli Critique,March 2000 issue of Internetworking • Used to compare sites (Industry Benchmarks)

  46. Activity • Brainstorm about other ways to automate usability assessment • What about new technology?

  47. Summary • Characterizing Automated Methods • Method Classes, Automation Types, Effort Levels • Automated Methods • Mainly automated capture and analysis • Guideline review enables automated critique • Represented only 33% of 132 surveyed approaches • Most require formal or informal interface usage • More Information • webtango.berkeley.edu • Survey paper on automated methods • Papers on quantitative Web page analysis

More Related