1 / 34

Surface Adhesion (Adsorption) in LBM

Surface Adhesion (Adsorption) in LBM. Key Papers. Martys, N. and H. Chen, 1996, PRE 53, 743-750 Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen, 2000, Comp. Materials Sci. 18, 7 – 12. Key Books.

johana
Download Presentation

Surface Adhesion (Adsorption) in LBM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Surface Adhesion (Adsorption) in LBM

  2. Key Papers • Martys, N. and H. Chen, 1996, PRE 53, 743-750 • Raiskinmäki, P., A. Koponen, J. Merikoski, and J. Timonen, 2000, Comp. Materials Sci. 18, 7 – 12

  3. Key Books • Adamson, A. W., and A.P. Gast, Physical Chemistry of Surfaces, New York, John Wiley & Sons, Inc., 1997. • Israelachvili, J. N., Intermolecular and Surface Forces, 2nd ed. Academic Press, London, 1992.

  4. Wetting http://www.hdm-stuttgart.de/projekte/printing-inks/b_sel42.jpg

  5. Wetting http://psii.kist.re.kr/Teams/psii/research/Con_4.jpg

  6. Geometrically-controlled Superhydrophobic surfaces http://www.nature.com/nmat/journal/v1/n1/images/nmat715-f1.jpg

  7. LBM Adhesive Force Formula • s is a ‘switch’ that takes on value 1 if the site at x + eaDt is a solid and is 0 otherwise • We seem to have flexibility in the choice of the pre-sum factor; the papers cited use r or Y

  8. Computation of y • // Compute psi, Eq. (61). • for( j=0; j<LY; j++) • for( i=0; i<LX; i++) • if( !is_solid_node[j][i]) • { • psi[j][i] = 4.*exp( -200. / ( rho[j][i])); • }

  9. // Compute interaction force, Eq. (66). for( j=0; j<LY; j++) { jp = ( j<LY-1)?( j+1):( 0 ); jn = ( j>0 )?( j-1):( LY-1); for( i=0; i<LX; i++) { ip = ( i<LX-1)?( i+1):( 0 ); in = ( i>0 )?( i-1):( LX-1); if( !is_solid_node[j][i]) { sum_x=0.; sum_y=0.; if( is_solid_node[j ][ip]) // neighbor 1 { sum_x = sum_x + WM*ex[1]; sum_y = sum_y + WM*ey[1]; } if( is_solid_node[jp][i ]) // neighbor 2 { sum_x = sum_x + WM*ex[2]; sum_y = sum_y + WM*ey[2]; } if( is_solid_node[j ][in]) // neighbor 3 { sum_x = sum_x + WM*ex[3]; sum_y = sum_y + WM*ey[3]; } Sforce

  10. if( is_solid_node[jn][i ]) // neighbor 4 { sum_x = sum_x + WM*ex[4]; sum_y = sum_y + WM*ey[4]; } if( is_solid_node[jp][ip]) // neighbor 5 { sum_x = sum_x + WD*ex[5]; sum_y = sum_y + WD*ey[5]; } if( is_solid_node[jp][in]) // neighbor 6 { sum_x = sum_x + WD*ex[6]; sum_y = sum_y + WD*ey[6]; } if( is_solid_node[jn][in]) // neighbor 7 { sum_x = sum_x + WD*ex[7]; sum_y = sum_y + WD*ey[7]; } if( is_solid_node[jn][ip]) // neighbor 8 { sum_x = sum_x + WD*ex[8]; sum_y = sum_y + WD*ey[8]; } sforce_x[j][i] = -Gads * psi[j][i] * sum_x; sforce_y[j][i] = -Gads * psi[j][i] * sum_y; } } } Sforce

  11. Contact Angles in SCMP LBM • Cohesive force: • Adhesive force: Interplay between these forces will determine wetting

  12. Young’s Equation?

  13. Contact Angles in SCMP LBM Assume uniform liquid or vapor surroundings:

  14. Contact Angles in LBM • Assume uniform surroundings: Liquid Vapor

  15. Contact Angles in LBM • Assume uniform surroundings: Liquid surrounded by solid Vapor surrounded by solid

  16. Contact Angles in LBM • Zero degree contact angle: • Adhesive force equal to cohesive force for liquid Liquid Liquid surrounded by solid

  17. Contact Angles in LBM • 180 degree contact angle: • Adhesive force on vapor equal to cohesive force for vapor Vapor Vapor surrounded by solid

  18. Contact Angles in LBM • 90 degree contact angle: • Adhesive force on vapor equal to cohesive force for ‘interface’ y (= [yl + yv]/2) Interface Interface surrounded by solid

  19. Adsorption • Asvl: Hamaker constant for interaction of solid with vapor through liquid • P: Disjoining pressure (P relative to flat, free interface)

  20. Adsorption rvap=85.7 rvap=85.7857 rvap=86.1285

  21. Capillary Condensation • Avll: Hamaker constant for interaction of liquid with liquid through vapor • P: Disjoining pressure (P relative to flat, free interface)

  22. Capillary Condensation rvap=86.557

  23. Adsorption/Capillary Condensation

  24. Hysteretic Wetting/Drying of Angular Pores (Tuller, Or, and Dudley,1999 WRR) Filled cross-sectional area Young-Laplace (zero contact angle) Shape factor Imbibition radius Drainage radius Saturation as a function of p at high tension p as a function of saturation at high tension

  25. Hysteretic Wetting and Drying

  26. Hysteretic Wetting and Drying

  27. Hysteritic Wetting and Drying

  28. Invasion Percolation

  29. Capillary Number • v inlet/outlet velocity • m viscosity of injected fluid • n porosity • g interfacial tension between fluids • q contact angle Friedman, 1999. J. Adhesion Sci Technol. 13(12), 1495-1518.

  30. Pore Selection and Impact of Ca on Pore Penetration v 10-3 v 10-4 Ca  2 x 10-4 Ca  2 x 10-5 r = 7.5 r = 5 r = 6.5 2,500 ts/movie step

  31. Viscosity Ratio • For D2Q9 LBM:

  32. Phase Diagram Air/Viscous Oil Glucose Soln./ Oil Lenormand et al. 1988. J. Fluid Mech. 189, 165-187. Air/Viscous Oil

  33. Viscosity-Matched Fluids Monolayer of 0.7 mm beads Frette et al., 1997. PRE 55(3) 2969-2975.

  34. Drainage and gravity stabilization No Gravity Gravity

More Related